PowerPoint プレゼンテーション

Size: px
Start display at page:

Download "PowerPoint プレゼンテーション"

Transcription

1 生体の合成反応と反応の結合 2 つの反応を結合させたものは ΔG<0 となるので右側の割合を多くさせられる

2 細胞中に存在する各種の高エネルギー物質 物質 自由エネルギー量 [kcal/mol] ホスホエノールピルビン酸 グリセリン酸 -1,3- 二リン酸 ホスホクレアチン アセチルリン酸 10.1 ATP -7.3 グルコース-1-リン酸 -5.0 フルクトース-6-リン酸 -3.8 グルコース-6-リン酸 -3.3 グリセリン酸 -3-リン酸 -2.4

3 電子伝達成分の酸化還元電位 酸化還元系酸化還元電位 E 0 '[volts] α ーケトグルタール酸 / コハク酸 H 2 /H + (ph 7.0, 25 ) NADH/NAD リポ酸 ( 還元型 )/ リポ ( 酸酸化型 ) β ーヒドロキシブチル酸 / アセト酢酸 乳酸 / ピルビン酸 リンゴ酸 / オキザロ酢酸 フラビンタンパク質 ( 還元型 / 酸化型 ) コハク酸 / フマル酸 シトクロムb Fe 2+ /Fe ユビキノン ( 還元型 / 酸化型 ) シトクロムc Fe 2+ /Fe シトクロムa Fe 2+ /Fe H 2 O/ 1/2O

4 酸化還元反応と酸化還元電位 酸化還元電位酸化還元反応 R O+ne に対して E = E - RT e 0 F log e n [R] [O] と定義される E 0 : この系の標準電極電位 [R]: 還元体 Rの活動度 [R]: 還元体 Rの活動度 [O]: 酸化体 Oの活動度 酸化還元電位と自由エネルギー変化の関係 ΔG=-nFE

5 大腸菌の生きている状態 ( 非平衡状態 / 定常状態 ) と平衡状態 大腸菌構成生体分子の結合エネルギーの総和 x10 10 ev 非平衡状態 大腸菌の構成元素の数炭素原子 :5.83x10 9 水素原子 :9.83x10 9 酸素原子 :2.67x10 9 窒素原子 :1.55x10 9 充分な時間 0.07 ev だけ平衡状態からずれている x10 10 エネルギーを最小にする結合の分布 ev 平衡状態 C-H (98.7 kcal/mol): 4.064x10 9 C-C (82.6 kcal/mol): 9.64x10 9 N N (225.8 kcal/mol): 0.78x10 9 O-H (110.6 kcal/mol): 5.34x10 9

6 太陽エネルギーの地球生態系による利用 ( 食物連鎖 ) 地球上で得られる最も安定なエネルギー源は太陽である 食物連鎖 1 年間に地球が受ける太陽エネルギーは 0.4~ J/year なる 植物による太陽エネルギーを利用した炭素の同化作用 地球上の全植物は 1 年間に地球上で炭素原子 (C) を 2000 億トン同化して 炭水化物にしている 1 モルの CO2 を固定するのに J のエネルギーが必要であり 全体では J が利用されている 全太陽光エネルギーの 0.084%~0.21% が光合成に利用されている

7 光合成細菌の光による ATP および NADPH の合成 電子受容 e - ADP+Pi e - P890 ユビキノン e - シトクローム b シトクローム c e - e - ATP 電子受容 e - P890 e - e - ユビキノン e - シトクローム b e - シトクローム c 電子供与体 e - NAD + /H + NADH

8 葉緑体中のチラコイド膜に存在する電子伝達系 光合成細菌のエネルギー変換系が統合された 進化のある段階で寄生した NADPH を生成 H + 高エネルギー電子 (4e - ) H + 高エネルギー電子 (2e - ) H + -ATPase ADP ATP 膜の一方に溜まった H + が膜内にある H + -ATPase の中を流れて軸を回転させ ATP を合成する 電気化学ポテンシャルの勾配を形成し H + -ATPase で ATP を生成

9 食物連鎖 Food chain 植物により炭水化物に変換された太陽エネルギーは食餌として食べた動物により順次に利用される 地球生態系は太陽エネルギーにより維持されている CO 2

10 太陽電池と燃料電池による葉緑体とミトコンドリアの類似サイクル 動物細胞と植物細胞には進化のある段階で寄生した細菌がミトコンドリアとなった 酸素 O 2 太陽 光合成系 O2 2 H 2 O 太陽電池 水素 H 2 2 N A D P H 3 A T P 脂質 蛋白質 糖質 C - ( H 2 O ) カルヴィン回路 葉緑体 太陽エネルギー 水素 H 2 C O 2 ミトコンドリア O 2 電子伝達 N A D H 系 A T P クレブス回路 2 H 2 O 酸素 O 2 水 H 2 0 燃料電池 水 H 2 0 太陽光エネルギーによる水の電気分解で水素と酸素を生成する 水素の酸素による酸化で生成する仕事 ( エネルギー )

11 人工光野菜工場 2000 年 4 月 3 日掲載信濃毎日新聞 長野県南安曇郡三郷村の野菜工場 ナトリウムランプを太陽の代わりの人工光とし 全体をコンピューターで管理により 温度 23 度 湿度 80% に保っている 種まき作業もロボットで行い リーフレタスやフリルアイス サラダ菜を培養液で栽培している 無農薬栽培のため 病原菌や病害虫から野菜を守るクリーンルームになっている 世羅野菜工場 ( カゴメ 広島 ) 農業 林業 水産業 畜産業などの第 1 次産業は太陽エネルギーで生産物を得る産業であり 人工光野菜工場のエネルギー源が石油 天然ガス 原子力などの場合は本来の意味の農業とはならない

12 生物進化の代謝系からの説明生物進化代謝の進化栄養の様式 母種生物 (0) A A が利用可能 ATP 栄養となる有機化合物 A からエネルギーを得る母種生物 (0) ATP B A A が枯渇すると B を A に変換する酵素を作る変異種 (1) が繁殖する B が用可能 C B A C が用可能 ATP B も枯渇すると C を B に変換する酵素を作る変異種 (2) が繁殖する ATP D C B A Dが用可能 Cも枯渇すると DをCに変換する酵素を作る変異種 (3) が繁殖する

13 解糖系 (Glycolysis) 原始発酵系 TCA cycle Acetyl-CoA CO 2 と H 2 O を生成し ATP へのエネルギー変換が完結する

14 生体内でのエネルギーの利用 ブドウ糖 ( グルコース ) の酸化 [ 試験管内 ] C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O kcal/mol [ 生体内 ] 解糖系 2ATP 2NADH=6ATP ピルビン酸 アセチル CoA 2NADH=6ATP TCA 回路 6NADH=18ATP 2FADH 2 =4ATP 2ATP 以上の代謝経路で 1 分子のグルコースから 38 分子の ATP が生成 (277 kcal/mol) 砂糖 ( 蔗糖 )= ブドウ糖 + 果糖 Sucrose=glucose+fructose NADH と FADH 2 は電子伝達系で ATP を生成する

15 地球生物の進化進化とはエネルギー利用系の進化である 1) 原始海洋に始原細胞が誕生していた 40 億年前環境 : 化学進化で蓄積した豊富な有機化合物を含む原始海洋酸素を含まない還元的な原始大気生物種 : 嫌気性細菌 嫌気性ラン藻エネルギー産生代謝 : 発酵代謝 ( 解糖系 )= 高エネルギー物質の利用 2) 生合成代謝の獲得環境 : 原始生物の異常な繁殖で海洋が貧栄養化生物種 : 生合成代謝を獲得した生物エネルギー産生代謝 : 発酵代謝 ( 解糖系 )+ 生合成代謝 ( 産生エネルギーの利用 ) 新規に高エネルギー物質を利用できるようになる代謝経路の延長による環境への適応進化 3) 細菌による太陽光の利用環境 : 低分子の栄養物質も枯渇生物種 : 光合成細菌 化学合成細菌エネルギー産生代謝 : 炭酸同化 (CO2 から自己物質を合成 ) 発酵代謝 ( 解糖系 ) 4) 藻類による光合成環境 : 発生する酸素ガスで大気組成が変化生物種 : ラン藻エネルギー産生代謝 : 光合成による炭酸同化 (CO2 から自己物質を合成 ) 水素供与体として水を利用 有毒な酸素が発生 5) 現在の生態系におけるエネルギー代謝環境 : 現在の組成の大気生物種 : 現存生物エネルギー産生代謝 : 光合成生物 ( 光合成系によるATP 産生 カルヴィン回路 ) 非光合成能生物 ( 解糖系 TCA 回路 電子伝達系 ATP)

16 カルノー サイクル熱機関の研究のために思考実験として1820 年代にカルノーが導入した熱平衡を維持したままに準静的過程でだけで仕事をする熱機関である 準静的過程であるので可逆熱機関である 作業 A 物質を理想気体とする場合で考える B 等温膨張過程 (A B) 理想気体が温度 T 1 の高温熱浴 ( 熱源 ) と接触を維持しながら 温度 T 1 の状態で熱量 Q 1 を受け取って膨張し 外部へ仕事 W 等温膨張をするとき その仕事は次式で表される W V B 1 pdv dv V B A V V A nrt V nrt 1 V log V 内部エネルギーは温度 T のみの関数であるから U B -U A =Q 1 +(-W)=0 となり Q 1 =W を得る 気体が吸収した熱はすべて外部への仕事になる B A

17 断熱膨張過程 (B C) B C 作業物質の理想気体は熱の出入りはなく膨張し 外部へ仕事 W 断熱膨張をするとき その仕事は次式で表される W V C VB 断熱過程であるので C pdv du UC U B) { U( T2 ) U( T1 )} U( T1 ) となり この断熱過程で温度が低下する B ( U( T2 ) pbvb pcvc が成立する また V C >V B なのでT 1 >T 2

18 等温圧縮過程 (C D) D C 理想気体が温度 T 2 の低温熱浴 ( 熱源 ) と接触を維持しながら 温度 T 2 の状態で熱量 Q 2 を放出して圧縮し 外部から仕事 W 等温圧縮を受けるとき その仕事は次式で表される V D VD nrt2 VD V W pdv dv nrt2 log nrt2 VC VC V V V 内部エネルギーは温度 Tのみの関数なので U しD -U C =(-Q 2 )+W=0 となり Q 2 =W を得る また p C V C =p D V D が成立する C C D

19 A 断熱圧縮過程 D A) D 作業物質の理想気体は熱の出入りはなく収縮し 外部から仕事 W 断熱収縮を受けるとき 断熱過程は dq=0 であり du=-pdv となるので その仕事は次式で表される W 断熱過程であるので V pdv du U A U D U T1 ) A D V D D A A A D ( U( T2 ) p V p V が成立する また V A <V D なので この断熱過程で温度が T 2 から T 1 に上昇する

20 非平衡系の熱力学 Ilya Prigogine He developed the concept of dissipative structures to describe open systems, in which an exchange of matter and energy occurs between a system and its environment. Prigogine received the Nobel Prize in Chemistry in 1977 for his dissipative structure research and for his contributions to nonequilibrium thermodynamics. P. Glansdorff and I. Prigogine (1971) Thermodynamic Theory of STRUCTURE, STABILITY AND FLUCTUATIONS" [Willey-Interscience]

21 非平衡熱力学の成立条件 運動系 (mechanical system) は基本的には分子の座標 (coordinate) と分子の運動量 (momenta) または分子の波動関数 (wave function) で決定される 巨視的な系では個々の分子の運動を記述しても意味はなく reduced description が熱力学 (theromodynamics) および流体力学 (hydrodynamics) の方法で与えられることが重要である 非平衡な系への巨視的な方法の適用が near-equilibrium 領域では可能である 化学反応がマクスウェルの平衡分布を乱さない程に充分遅ければ成分の平均濃度の巨視的な記述は可能であるが なお 化学反応速度と親和性の関係は非線形である 非平衡熱力学の中心問題は 熱力学の方法を平衡状態から出発して非線形な状況と不安定性を含む現象の全ての範囲に拡張できるかということである 系が平衡にあると仮定し 同じ独立変数で local entropy を記出来る状況では この拡張は可能である この 'local equilibrium' の仮定は熱力学的平衡を保つ衝突効果が優勢であることを示唆している

22 部分系と局所平衡 マクロな系の性質に関する法則を系の統計的な性質だけからひき出すことができるのは, 系が定常状態にあって, その統計的分布関数が時間的に一定で, エルゴード仮説が成り立つ場合に限られる 一般に閉じた系がたまたまこの定常状態にないならば, 系はその後に統計的な最大確率をもつ分布を意味する系の平衡状態 ( 定常状態 ) に向かって 緩和 してゆく もし, 他の条件がすべて等しいならば, 緩和時間 τ は系の大きさの平方根に比例することが知られている これは, 緩和過程はミクロな系の性質だけによって決まり, マクロな系の性質には直接依存しないことによる エルゴード仮説 : 長い時間間隔では 微小状態からなる位相空間内で同じエネルギー領域の滞在時間は位相空間で占める体積に比例する そのようなすべての実現可能な微小状態は長い時間間隔では等しい確率で起こる つまり 時間平均と 統計力学でのアンサンブル平均は等しくなる

23 マクロな系とその環境体との関係 マクロな系 環境体 物質 系が環境体と非平衡の関係にあるとき 物質 エネルギーの交換により環境体と平衡になる エネルギー 表面積は半径の2 乗で増加系の拡大 { 体積は半径の3 乗で増加 系の拡大に伴い 表面を介しての物質 エネルギー交換の寄与は低下し 閉じた系と見なせるようになる

24 非平衡状態にあるマクロな系とその仮想的な部分系の関係 統計的に非平衡状態にあるマクロな系を以下の 2 条件を満足するように仮想的な部分系に分割する 1) 局所平衡の条件 : 部分系の大きさは充分に小さく マクロな系全体の緩和時間 τ M に比較して部分系緩和時間 τ m は充分に短い 観測時間を τ observe とすると τ observe τ m となり 観測中は常に部分系が平衡状態にある 厳密には各部系は閉じてはなく 局所平衡を乱さない程度の物質 エネルギー交換が存在する これにより マクロな系全体が平衡状態へと緩和する 2) 統計的独立性の条件 : 部分系は充分に大きく 閉じた系と見なすことが出来る この部分系に生じる変化はその周囲の部分系に生じる変化とは統計的に独立である 以上の条件で分割が可能なとき 各部分系に対して エルゴード仮説が成立するので 統計的な手法が適用可能となる

25 化学平衡と統計力学 生物とは制御された化学反応のシステム であるので ここでは化学反応を対象とする 化学反応は ~10 23 の膨大な数の分子集団に生じる変化であるが ミクロなレベルでは分子と分子の衝突が高頻度で起こっており この微視的過程の集合がマクロな化学変化となっている しかし ここで 微視的過程として 2 体間の衝突を量子力学的に記述できたとしても その反応生成物は高い内部エネルギーをもち 別の衝突や構造の安定化 分解などで内部エネルギーを失うので それが反応に大きな影響を及ぼし 反応の素過程を反応の分子種だけで取り扱うことはできない 定温定圧下の化学反応 A+B C+D で初期時刻に A と B を混合すると反応系には必ず A B C D が存在するようになり 充分に長い時間が経過すると各成分の分布比が一定で時間的に変化しない化学平衡に到達する 同じ条件で C と D を混合したときもこの化学平衡に到達する

26 緩和過程 膨大な数の粒子が不規則な運動 ( ブラウン運動 ) をしている系が非平衡状態から平衡状態へ緩和する過程を考える 内部自由度をもたない粒子がすべて同じ速度で運動し この粒子系が平衡状態にある熱浴とエネルギー交換が可能な接触をしていると仮定する 粒子間 粒子と熱浴の間のエネルギー交換は衝突によるとし 粒子系の粒子を P 熱浴の粒子を R とし そのときのそれぞれの初速度を u v とする 衝突によってそれぞれの速度が u v に変化したとするとその変化は P(u)+R(v) P(u )+R(v ) と表される この過程は純粋に力学的であるので可逆過程である しかし 熱浴粒子は平衡分布をしているため 熱浴粒子が速度 v を取る確率と速度 v を取る確率は等しくない したがって 一般に衝突が起こる確率 P collision は次のようになる P collision {P(u)+R(v)} P collision {P(u )+R(v )} 粒子系ではすべて同じ速度で運動していると仮定したが 時間の経過とともに 速度分布に幅が生じ 充分に長い時間の後には 熱浴の温度と同一の温度の平衡分布となる 個々の粒子の微視的な過程は可逆的な力学過程であるにも拘わらず 系に生じる巨視的な変化は不可逆的になる 巨視的な系が統計的な平衡状態に到達する現象を緩和過程と呼ぶが この過程が実現するのは系の自由度の数が圧倒的に大きいからである

27 定常状態と平衡状態 平衡状態 : ギブスの自由エネルギーが極小 定常状態 : 非平衡状態 (=Living state) の 1 つで時間的に変化しない状態 温度勾配 高温 高温 物質の拡散 濃度勾配 物質の拡散 低温 濃度の上昇 低温 低濃度 高濃度 定常状態 ( 温度差が維持 ) 高温 濃度勾配による拡散 温度勾配による拡散 低温 温度差を維持するので熱の流れはあり エントロピーの内部生成がある

28 生命と定常状態 生物の非平衡状態は近似的には定常状態であり 生体内では常にエント ロピーが生成している 定常状態を維持するためには 系内で絶えず生 成されたエントロピーの源を外部から補給しなければならない 非平衡状態におけるエントロピー生成速度 エントロピー生成速度 の時間変化を考える 生物は開放系であり つねに負の符号をもつ内部項 定まらない外部項 と符号の に分けられる 定常状態ではすべての状態量 は時間によって変わらず これはエントロピーについても成り立ち ds dt である d dt des dis 0 dt dt d S T d i S dt e d i 0 dt i 0 des ここで dt であるので 0 dt となり 系の不可逆過程を打ち消すように 系内に負のエントロピーの流れがある

29 q 開放系でエントロピーの流れは js js と表わされ 熱の流れの T i i i ないとき (q=0) エントロピーの流れは物質の流れによってのみ起こる このとき定常状態で j s js i i 0 i となる この式は 系に取り込まれた物質のもつエントロピーは それが系外に放出されたときにもつエントロピーより小さいことを示している 熱力学的な表現では 生物は取り入れた秩序性の高い物質( 低エントロピー ) を熱力学的に消化し エントロピーを大にして系外に放出していることになる 植物は太陽エネルギーを利用して この秩序性の高い物質を生成しているシステムである

30 現象方程式 (Phenomenological equation) 定常状態の熱力学的な表現 = エントロピー生成速度極小の原理 これが 非平衡熱力学の成果の一つである これを証明するために Flux (J) と Force (X) による現象の表式を導入する 線形現象方程式 ここで L ij は結合定数 (coupling constant) である ここで仮定した現象方程式の線形性が成り立つのは充分に遅い過程で かつ 平衡状態から遠くない非平衡状態に於いてである

31 Ohm の電気抵抗の法則 I=(1/R) V I: 電流 R: 抵抗 V: 電圧 Fick の拡散法則 J=-D gradc J: 拡散方向に垂直な単位面積を単位時間に拡散する溶質の量 D: 拡散係数 gradc: 溶質の濃度 c の測定点での勾配 Fourier の熱伝導の法則 Q=-K gradθ Q: 熱流 K: 熱伝導度 θ: 等温面に垂直な温度勾配 熱現象の Thomson 効果 Q=θ IΔT Q: 単位時間に発生する熱量 θ: トムスン係数 Ι: 電流 ΔT: 温度差 同次線形として表現する J=L 1 X 1 +L 2 X 2 J=Q X 1 =I X 2 =ΔT L 1 と L 2 は J と X 1 X 2 のそれぞれの関係で決められる

32 エントロピー生成速度が 保存則の一般的表現 a Ja - a = 0 で a=s( 比エントロピー ) とし t d/dt= / t+v を用いて流れに乗る座標系に変換する 連続の方程式 dρ/dt+ρ v=0 も用い がエントロピーの内部生成速度となることから s と定義して 非平衡状態で系のエントロピー T バランスの式 を得る 一方 Gibbsの式 から ここで v=1/ρ を用いている この式の内部エネルギー 圧力 成分モル分率の時間微分の表式を代入して 上式の形に整理する このとき である 式の比較から と表わされる これらは いずれも流束と力の積 と表される根拠は部分平衡の原理から a と見なすことができる

33 エントロピー生成速度 は と表される : 部分重心の速度の勾配が力となって応力または静圧という流れを生じる : 親和力という力によって化学反応という流れが生じる : 化学ポテンシャルの勾配が力となって拡散の流れが生じる : 温度勾配が力となって熱の流れを生じる

34 力 (Force) により流束 (Flux 現象 ) が生じると考えると エントロピー生成速度は 線形現象方程式 と表される を仮定すれば これより X 1,X 2,,X k を固定したとき エントロピー生成速度が極値をもつ条件は (i=k+1,,n) で与えられる これに上のΦの表式を代入して られる これにOnsagerの相反定理 (i=k+1,,n) を得る この 0 次の定常状態ではすべての流束は消えており これが平衡状態である (i=k+1,,n) が得 (i j) を用いて これは 固定した力に共役な流束は残り それ以外の流束が 0 となることを示している 摂動を加えたとき 常にその摂動を打ち消すように流れが生じ これは拡張された Le Chatelier の原理である

35 線形現象方程式は エントロピー生成速度は となる を仮定すれば J 1 =L 11 X 1 +L 12 X 2 =0 ( 定常状態 ) J 2 =L 21 X1+L 22 X 2 Φ=J 1 X 1 +J 2 X 2 =(L 11 X 1 +L 12 X 2 )X 1 +(L 21 X 1 +L 22 X 2 )X 2 =L 11 X 12 +2L 12 X 1 X 2 +L 22 X 2 2 において相反定理 (L ij =L ji ) を用いた X 2 を固定した力 ( 一定 ) として Φ の微分をとるとを導出する X 1 2J 1 0 固定した力 X 2 に共役した流速 J 2 は残ることになる エントロピー生成速度の極小と定常状態 (J 1 =0) は等価となる

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 化学ポテンシャル (Chemical potential) Gibbs の自由エネルギー : G=H-TS Enthalpy:H=U+PV Entropy:S ml m L 1 化学ポテンシャルは 1 分子 ( 粒子 ) 当たりのギブス自由エネルギーであり 濃度が寄与するよるエネルギーである 水に溶けた脂質分子の化学ポテンシャル : 0 w X w 0 micel,m w RT ln 0 w 仮定

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ヒトでは 1.7m の長さがある DNA を核内に入るサイズにする機構 ヒストンの役割 光合成細菌の光による ATP および NAD(P)H の合成 電子受容 e - P890 e - ユビキノン e - シトクローム b シトクローム c e - e - ADP+Pi ATP 励起された電子は電子伝達系の過程でエネルギーは ATP に変換される 電子受容 e - P890 e - e - ユビキノン

More information

気体の性質-理想気体と状態方程式 

気体の性質-理想気体と状態方程式  自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://www.tagen.tohoku.ac.j/labo/ueda/index-j.html クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関

More information

等温可逆膨張最大仕事 : 外界と力学的平衡を保って膨張するとき 系は最大の仕事をする完全気体を i から まで膨張させるときの仕事は dw d dw nr d, w nr ln i nr 1 dw d nr d i i nr (ln lni ) nr ln これは右図 ( テキスト p.45, 図

等温可逆膨張最大仕事 : 外界と力学的平衡を保って膨張するとき 系は最大の仕事をする完全気体を i から まで膨張させるときの仕事は dw d dw nr d, w nr ln i nr 1 dw d nr d i i nr (ln lni ) nr ln これは右図 ( テキスト p.45, 図 物理化学 Ⅱ 講義資料 ( 第 章熱力学第一法則 ) エネルギーの保存 1 系と外界系 : 注目している空間 下記の つに分類される 開放系 : 外界との間でエネルギーの交換ができ さらに物資の移動も可能閉鎖系 : 外界との間でエネルギーの交換はできるが 物質の移動はできない孤立系 : 外界との間でエネルギーも物質も移動できない外界 : 系と接触している巨大な世界 例えば エネルギーの出入りがあっても

More information

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h])

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h]) 平成 25 年度化学入門講義スライド 第 3 回テーマ : 熱力学第一法則 平成 25 年 4 月 25 日 奥野恒久 よく出てくる用語 1 熱力学 (thermodynamcs) 系 (system) 我々が注意を集中したい世界の特定の一部分外界 (surroundngs) 系以外の部分 系 外界 系に比べてはるかに大きい温度 体積 圧力一定系の変化の影響を受けない よく出てくる用語 2 外界との間で開放系

More information

第1回 生体内のエネルギー産生

第1回 生体内のエネルギー産生 第 1 回生体内のエネルギー産生 日紫喜光良 基礎生化学 2018.4.10 1 暮らしの中の生化学と関連した事象 発酵 発酵食品の製造 酒造 代謝 エネルギー 栄養 栄養素 代謝異常 糖尿病 肥満 2 健康についての疑問は生化学に関連 コラーゲンをたくさんとると肌がぷりぷりになる? ご飯さえ食べなければ太らない ( 糖質ダイエット?) か? 3 教科書 リッピンコットシリーズイラストレイテッド生化学

More information

Microsoft PowerPoint - 物理概論_熱力学2_2012.ppt [互換モード]

Microsoft PowerPoint - 物理概論_熱力学2_2012.ppt [互換モード] 物理学概論 II 熱 熱力学 () 知能機械専攻 下条 誠 熱機関 熱の形式でエネルギーが供給される原動機を熱機関という. 熱機関として, 熱 をなるべく多くの仕事 に変えるものが望ましい. : 熱機関の効率 蒸気機関 熱機関の効率 熱 高温熱源 ( ) 燃料を燃やす 高温熱源から低温熱源へ熱が移動するときの熱の差が仕事になる 熱 作業物質 ( 蒸気機関だと水蒸気 ) 低温熱源 ( ) 冷却する 仕事

More information

Microsoft PowerPoint - C03-1_ThermoDyn2015_v1.ppt [互換モード]

Microsoft PowerPoint - C03-1_ThermoDyn2015_v1.ppt [互換モード] 計算力学技術者 級 ( 熱流体力学分野の解析技術者 ) 認定試験対策講習会 - 3 章 1 熱力学 伝熱学の基礎 - 認定レベル 認定を取得した技術者は, 基本的な流体力学, 熱力学 ( 伝熱学を含む ) の問題に対して, 単相の非圧縮性流 / 圧縮性流 / 層流 / 乱流の範囲において正しく解析問題を設定することができ, 解析方法の内容を理解しており, さらに解析結果の信頼性を自分自身で検証することができる.

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Hanako-公式集力学熱編.jhd

Hanako-公式集力学熱編.jhd 熱分野 ================================================= E-mail yamato@my.email.ne.j ホームページ htt://www.ne.j/asahi/hanako/hysics/ ================================================= 公式集力学熱編.jhd < 1 > 気体の法則 気体の状態変化

More information

第1回 生体内のエネルギー産生

第1回 生体内のエネルギー産生 第 1 回生体内のエネルギー産生 日紫喜光良 基礎生化学 2014.4.15 1 暮らしの中の生化学と関連した事象 発酵 発酵食品の製造 酒造 代謝 エネルギー 栄養 栄養素 代謝異常 糖尿病 肥満 2 健康についての疑問は生化学に関連 スポーツ飲料の成分の科学的根拠は? コラーゲンをたくさんとると肌がぷりぷりになる? ご飯を食べなければ太らないか? 3 教科書 Champe PC, Harvey

More information

生理学 1章 生理学の基礎 1-1. 細胞の主要な構成成分はどれか 1 タンパク質 2 ビタミン 3 無機塩類 4 ATP 第5回 按マ指 (1279) 1-2. 細胞膜の構成成分はどれか 1 無機りん酸 2 リボ核酸 3 りん脂質 4 乳酸 第6回 鍼灸 (1734) E L 1-3. 細胞膜につ

生理学 1章 生理学の基礎 1-1. 細胞の主要な構成成分はどれか 1 タンパク質 2 ビタミン 3 無機塩類 4 ATP 第5回 按マ指 (1279) 1-2. 細胞膜の構成成分はどれか 1 無機りん酸 2 リボ核酸 3 りん脂質 4 乳酸 第6回 鍼灸 (1734) E L 1-3. 細胞膜につ の基礎 1-1. 細胞の主要な構成成分はどれか 1 タンパク質 2 ビタミン 3 無機塩類 4 ATP 第5回 (1279) 1-2. 細胞膜の構成成分はどれか 1 無機りん酸 2 リボ核酸 3 りん脂質 4 乳酸 第6回 (1734) 1-3. 細胞膜について正しい記述はどれか 1 糖脂質分子が規則正しく配列している 2 イオンに対して選択的な透過性をもつ 3 タンパク質分子の二重層膜からなる 4

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Raction Enginring 講義時間 ( 場所 : 火曜 限 (8-A 木曜 限 (S-A 担当 : 山村 火 限 8-A 期末試験中間試験以降 /7( 木 まで持ち込みなし要電卓 /4( 木 質問受付日講義なし 授業アンケート (li campus の入力をお願いします 晶析 (crystallization ( 教科書 p. 濃度 溶解度曲線 C C s A 安定 液 ( 気

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

A solution to Problems(物理化学II)Problem5

A solution to Problems(物理化学II)Problem5 A solution to roblems( 物理化学 II)roblem 5 ) Q 0, W 0, Δ 0, ΔU0, nr dg - Sd d より, G - 8.345 298 2.303log(6/) - 4440(J/mol) da - Sd d A - 8.345 298 2.303log(6/) - 4440(J/mol) 2) da - Sd d A ΔA da d, ΔG d R

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 熱力学第一法則 1 物体が他の物体に与える影響 動かす / 止める ふくらませる / しぼませる 温める / 冷やす 明るくする / 暗くする 結合させる / 分解させる 電気を流す / 電気を消費する 機械的エネルギー ( 仕事 ) 熱エネルギー ( 熱量 ) 光エネルギー 化学エネルギー電気的エネルギー 系の内部エネルギーの変化量 ΔU = ( 仕事 )+( 化学エネルギー )+( 電気的エネルギー

More information

スライド 1

スライド 1 ミトコンドリア電子伝達系 酸化的リン酸化 (2) 平成 24 年 5 月 21 日第 2 生化学 ( 病態生化学分野 ) 教授 山縣和也 本日の学習の目標 電子伝達系を阻害する薬物を理解する ミトコンドリアに NADH を輸送するシャトルについて理解する ATP の産生量について理解する 脱共役タンパク質について理解する 複合体 I III IV を電子が移動するとプロトンが内膜の内側 ( マトリックス側

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

細胞の構造

細胞の構造 大阪電気通信大学 5/15/18 本日の講義の内容 代謝 教科書 第 5 章 代謝とは? 同化で生じる化学反応 1( 炭酸同化 ) 同化で生じる化学反応 2( 窒素同化 ) 異化で生じる化学反応 1( 好気的代謝 ) 異化で生じる化学反応 2( 嫌気的代謝 ) 代謝とは 生物の体内 細胞内で生じる化学反応全般 生命活動のエネルギーを作る ( 同化 異化 ) 代謝とは? 同化 : エネルギーを吸収する反応例

More information

暔棟壔妛墘廗栤戣

暔棟壔妛墘廗栤戣 化学 III 演習問題 1 L = 1dm 3,1 cal = 4.184 J,R = 8.314 J K -1 mol -1 I. 物質の存在状態 1. 原子, 分子の構造について説明せよ キーワード電子, 原子核, 陽子, 中性子, 共有結合, 水分子などの具体的分子 2. 物質の三態について, それぞれの特徴およびそれらの間の違いを説明せよ キーワード固体, 液体, 気体, 構造, 分子の運動状態

More information

4 章エネルギーの流れと代謝

4 章エネルギーの流れと代謝 4 章エネルギーの流れと代謝 細胞代謝と自由エネルギー 自発的反応 分解反応 = 起こりやすい反応 熱の放出 エネルギー減少 合成反応 = 起こりにくい反応 熱を加える ΔG エネルギー増加 +ΔG CO 2 + H 2 O A B ΔG > 0 エネルギー的に不利 S P ΔG < 0 エネルギー的に有利 光 熱 A 光合成 B ΔG > 0 + ΔG < 0 = ΔG < 0 S P 有機分子

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1.2 熱力学の法則 1 エネルギーが移るとき 一部は熱で逃げる ( 熱も含めれば 全エネルギーは保存される ) 自然の法則 なにかが起こる前の物体のエネルギー なにかが起こった後の物体のエネルギー = 他の物体に与える影響 + 熱 これまでに実験的 理論的な反例がない 熱力学第一法則 2 物体が他の物体に与える影響 動かす / 止める ふくらませる / しぼませる 温める / 冷やす 明るくする

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

Microsoft PowerPoint - 熱力学前半.ppt [互換モード]

Microsoft PowerPoint - 熱力学前半.ppt [互換モード] 熱 学 授業計画 1) 熱現象と熱力学 2) 状態量と状態方程式 3) 熱力学第 1 法則と内部エネルギー熱現象を巨視的に研究 4) 等温過程と断熱過程 5) カルノーサイクルと熱力学第 2 法則 6) 可逆過程と不可逆過程 7) 熱機関の効率とクラウジウスの不等式 8) 中間試験 9) エントロピーの定義 10) エントロピーの計算方法 11) 不可逆性とエントロピーの確率論的意味 12) エントロピーと微視的状態

More information

12.熱力・バイオ14.pptx

12.熱力・バイオ14.pptx 本日の英単語 Thermodynamics 熱力学 Enthalpy エンタルピー Free energy 自由エネルギー Exothermic reaction 発熱反応 Endothermic 吸熱 Exergy エクセルギー 11. 地球システムの活動持続条件 火力発電所の場合 電力を生み出し続けるには 1 高温源 ( 低エントロピー ) Q 1 3 水 Q 2 2 廃熱 ( 高エントロピー

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - ‚æ4‘Í

Microsoft PowerPoint - ‚æ4‘Í 第 4 章平衡状態 目的物質の平衡状態と自由エネルギーの関係を理解するとともに, 平衡状態図の基礎的な知識を習得する. 4.1 自由エネルギー 4.1.1 平衡状態 4.1.2 熱力学第 1 法則 4.1.3 熱力学第 2 法則 4.1.4 自由エネルギー 4.2 平衡状態と自由エネルギー 4.2.1 レバールール 4.2.2 平衡状態と自由エネルギー 4.3 平衡状態図 4.3.1 全率固溶型 4.3.2

More information

Taro-ChemTherm06.jtd

Taro-ChemTherm06.jtd 第 6 章気体の性質 1. 理想気体 [ 気体の状態方程式 ] PV nrt (1) 化学総論 第 6 章気体の性質 25 [ 内部エネルギー ] ( ) 0 (2) [ 問 1](a) 熱力学の基礎方程式から, つぎの関係式があることを示せ du TdS - PdV (A) (b) 上式を, 温度一定条件下で, 体積 V で偏微分し, マックスウェルの式 S P ( ) ( ) (B) T V を利用すると,

More information

偏微分の定義より が非常に小さい時には 与式に上の関係を代入すれば z f f f ) f f f dz { f } f f f f f 非常に小さい = 0 f f z z dz d d opright: A.Asano 7 まとめ z = f (, 偏微分 独立変数が 個以上 ( 今は つだけ考

偏微分の定義より が非常に小さい時には 与式に上の関係を代入すれば z f f f ) f f f dz { f } f f f f f 非常に小さい = 0 f f z z dz d d opright: A.Asano 7 まとめ z = f (, 偏微分 独立変数が 個以上 ( 今は つだけ考 opright: A.Asano 微分 偏微分 Δ の使い分け 微分の定義 従属変数 = f () という関数の微分を考える は独立変数 熱力学のための数学基礎 U du d Δ: ある状態と他の状態の差を表しています U d : 微分記号 Δ の差が極微小 極限的に 0 の関係を表します : 偏微分記号 変数が つ以上で成り立っている関数で d f ( ) f ( ) lim lim d 0 0

More information

1 編 / 生物の特徴 1 章 / 生物の共通性 1 生物の共通性 教科書 p.8 ~ 11 1 生物の特徴 (p.8 ~ 9) 1 地球上のすべての生物には, 次のような共通の特徴がある 生物は,a( 生物は,b( 生物は,c( ) で囲まれた細胞からなっている ) を遺伝情報として用いている )

1 編 / 生物の特徴 1 章 / 生物の共通性 1 生物の共通性 教科書 p.8 ~ 11 1 生物の特徴 (p.8 ~ 9) 1 地球上のすべての生物には, 次のような共通の特徴がある 生物は,a( 生物は,b( 生物は,c( ) で囲まれた細胞からなっている ) を遺伝情報として用いている ) 1 編 / 生物の特徴 1 章 / 生物の共通性 1 生物の共通性 教科書 p.8 ~ 11 1 生物の特徴 (p.8 ~ 9) 1 地球上のすべての生物には, 次のような共通の特徴がある 生物は,a( 生物は,b( 生物は,c( ) で囲まれた細胞からなっている ) を遺伝情報として用いている ) を利用していろいろな生命活動を行っている 生物は, 形質を子孫に伝える d( ) のしくみをもっている

More information

第6回 糖新生とグリコーゲン分解

第6回 糖新生とグリコーゲン分解 第 6 回糖新生とグリコーゲン分解 日紫喜光良 基礎生化学講義 2018.5.15 1 主な項目 I. 糖新生と解糖系とで異なる酵素 II. 糖新生とグリコーゲン分解の調節 III. アミノ酸代謝と糖新生の関係 IV. 乳酸 脂質代謝と糖新生の関係 2 糖新生とは グルコースを新たに作るプロセス グルコースが栄養源として必要な臓器にグルコースを供給するため 脳 赤血球 腎髄質 レンズ 角膜 精巣 運動時の筋肉

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

CERT化学2013前期_問題

CERT化学2013前期_問題 [1] から [6] のうち 5 問を選んで解答用紙に解答せよ. いずれも 20 点の配点である.5 問を超えて解答した場合, 正答していれば成績評価に加算する. 有効数字を適切に処理せよ. 断りのない限り大気圧は 1013 hpa とする. 0 C = 273 K,1 cal = 4.184 J,1 atm = 1013 hpa = 760 mmhg, 重力加速度は 9.806 m s 2, 気体

More information

第 4 章熱力学第一法則 熱や仕事は移動するエネルギーである 熱エネルギー *1 はエネルギーの 1 つの形態であり, エネルギーとは ギリシャ語で 仕事をする能力 の意味をもつエネルギアが語源とされる. 仕事とは, 力に逆らう動き である. 熱機関は, 化学エネルギー *1 熱とは,

第 4 章熱力学第一法則 熱や仕事は移動するエネルギーである 熱エネルギー *1 はエネルギーの 1 つの形態であり, エネルギーとは ギリシャ語で 仕事をする能力 の意味をもつエネルギアが語源とされる. 仕事とは, 力に逆らう動き である. 熱機関は, 化学エネルギー *1 熱とは, 70 第 4 章熱力学第一法則 現代文明は, 主に石炭, 石油および天然ガスのような化石燃料からのエネルギーに依存している. このエネルギーを取り出す過程で物質の変化が行われ, また力学的エネルギーや電気的エネルギーへの変換などが行われる. 物質の変化には燃焼などの化学変化と, 液体から気体への状態変化がある. 本章では, 物質の変化やエネルギー変換過程における熱の発生や移動を定量的に取り扱うために必要な熱化学の基礎として,

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k 反応速度 触媒 速度定数 反応次数について. 化学反応の速さの表し方 速さとは単位時間あたりの変化の大きさである 大きさの値は 0 以上ですから, 速さは 0 以上の値をとる 化学反応の速さは単位時間あたりの物質のモル濃度変化の大きさで表すのが一般的 たとえば, a + bb c (, B, は物質, a, b, c は係数 ) という反応において,, B, それぞれの反応の速さを, B, とし,

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

平成27年度 前期日程 化学 解答例

平成27年度 前期日程 化学 解答例 受験番号 平成 27 年度前期日程 化学 ( その 1) 解答用紙 工学部 応用化学科 志願者は第 1 問 ~ 第 4 問を解答せよ 農学部 生物資源科学科, 森林科学科 志願者は第 1 問と第 2 問を解答せよ 第 1 問 [ 二酸化炭素が発生する反応の化学反応式 ] 点 NaHCO 3 + HCl NaCl + H 2 O + CO 2 CO 2 の物質量を x mol とすると, 気体の状態方程式より,

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

物理学に於ける因果関係、エントロピー生産、自己組織化

物理学に於ける因果関係、エントロピー生産、自己組織化 エントロピーの法則と生命現象 大阪大学名誉教授長谷川晃 2009 年 11 月 14 日於科学カフェ 序言 エントロピー増大の法則と生命現象は矛盾するか? エントロピーについて エントロピー増大の法則の意味 閉じた系と開いた系 連続体の自己組織化とエントロピー ( 閉じた系 ) 生命はネゲントロピーの吸収とエントロピーの排泄で維持されている ( 生物と環境の開いた系 ) 太陽の恵みは地球へのネゲントロピーの注入とそれによる生命の維持

More information

第 Ⅳ 部細胞の内部構造 14 エネルキ ー変換 -ミトコント リアと葉緑体 ( 後半 )p 葉緑体 chloroplast と光合成 photosynthesis 4. ミトコント リアと色素体の遺伝子系 5. 電子伝達系 electron-transport chain の進

第 Ⅳ 部細胞の内部構造 14 エネルキ ー変換 -ミトコント リアと葉緑体 ( 後半 )p 葉緑体 chloroplast と光合成 photosynthesis 4. ミトコント リアと色素体の遺伝子系 5. 電子伝達系 electron-transport chain の進 第 Ⅳ 部細胞の内部構造 14 エネルキ ー変換 -ミトコント リアと葉緑体 ( 後半 )p793-826 3. 葉緑体 chloroplast と光合成 photosynthesis 4. ミトコント リアと色素体の遺伝子系 5. 電子伝達系 electron-transport chain の進化 菊地浩輔 0. 2 章の復習 - 1 - 解糖系 C6 グルコース C3 2 三単糖リン酸 ( グリセルアルデヒド

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

Microsoft PowerPoint マクロ生物学9

Microsoft PowerPoint マクロ生物学9 マクロ生物学 9 生物は様々な化学反応で動いている 大阪大学工学研究科応用生物工学専攻細胞動態学領域 : 福井希一 1 生物の物質的基盤 Deleted based on copyright concern. カープ分子細胞生物学 より 2 8. 生物は様々な化学反応で動い ている 1. 生命の化学的基礎 2. 生命の物理法則 3 1. 生命の化学的基礎 1. 結合 2. 糖 脂質 3. 核酸 4.

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題 化学 Ⅰ- 表紙 平成 31 年度神戸大学大学院理学研究科化学専攻入学試験 化学 Ⅰ 試験時間 10:30-11:30(60 分 ) 表紙を除いて 7 ページあります 問題 [Ⅰ]~ 問題 [Ⅵ] の中から 4 題を選択して 解答しなさい 各ページ下端にある 選択する 選択しない のうち 該当する方を丸で囲みなさい 各ページに ( 用紙上端 ) と ( 用紙下端 ) を記入しなさい を誤って記入すると採点の対象とならないことがあります

More information

スライド 1

スライド 1 ミトコンドリア電子伝達系 酸化的リン酸化 平成 24 年 5 月 21 日第 2 生化学 ( 病態生化学分野 ) 教授 山縣和也 本日の学習の目標 電子伝達系で NADH から O2 へ電子が流れるしくみを理解する 電子が伝達されると共役して ATP が産生されるしくみを理解する エネルギー代謝経路 グリコーゲン グリコーゲン代謝 タンパク質 アミノ酸代謝 トリアシルグリセロール グルコース グルコース

More information

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し,

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し, ヘンリーの法則問題の解き方 A. ヘンリーの法則とは溶解度が小さいある気体 ( 溶媒分子との結合力が無視できる気体 ) が, 同温 同体積の溶媒に溶けるとき, 溶解可能な気体の物質量または標準状態換算体積はその気体の分圧に比例する つまり, 気体の分圧が P のとき, ある温度 ある体積の溶媒に n mol または標準状態に換算してV L 溶けるとすると, 分圧が kp のとき, その溶媒に kn

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reactio Egieeig 講義時間 ( 場所 : 火曜 2 限 (8- 木曜 2 限 (S-2 担当 : 山村 高さ m Quiz: 反応器単価 Q. 炭素鋼で作られた左図のような反応器を発注する atm で運転するとして 製造コストはいくらか 反応器体積 7.9 m 3 直径 m a. $ 9,8 b. $ 98, c. $98, 8 円 /$, 29// ( 千 6 万円 出典

More information

< F2D819A F90B696BD95A8979D89BB8A778169>

< F2D819A F90B696BD95A8979D89BB8A778169> 生命物理化学 系について 熱力学で考える 系 には次の つがある 開いた系 : や物質の出入りがある生物や細胞のような系 閉じた系 : の出入りはあるが, 物質の出入りはない系 孤立系 : 物質やの出入りがない宇宙のような系 ( 熱力学と自由 ) 一定圧で内部に仕事をした場合ピストン 系 ΔU( 内部 E の増加 ) W 仕事 () 一定圧で内部 ( 系 ) に仕事をした 熱量 () 開いた系閉じた系孤立系入れ子構造の開放定常系

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

4. 発表内容研究の背景熱力学は物理学の基礎理論の一つであり その応用は熱機関や化学反応など多岐にわたっています 熱力学においてとりわけ重要なのは 第二法則です 熱力学第二法則とはエントロピー増大則に他ならず 断熱された系のエントロピーが減ることはない と表されます 熱力学第二法則は不可逆な変化に関

4. 発表内容研究の背景熱力学は物理学の基礎理論の一つであり その応用は熱機関や化学反応など多岐にわたっています 熱力学においてとりわけ重要なのは 第二法則です 熱力学第二法則とはエントロピー増大則に他ならず 断熱された系のエントロピーが減ることはない と表されます 熱力学第二法則は不可逆な変化に関 量子力学から熱力学第二法則を導出することに成功 時間の矢 の起源の解明へ大きな一歩 1. 発表者伊與田英輝 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 金子和哉 ( 東京大学大学院工学系研究科物理工学専攻博士課程 1 年生 ) 沙川貴大 ( 東京大学大学院工学系研究科物理工学専攻准教授 ) 2. 発表のポイント マクロな世界の基本法則である熱力学第二法則を カノニカル分布 ( 注 1) など統計力学

More information

第6回 糖新生とグリコーゲン分解

第6回 糖新生とグリコーゲン分解 第 6 回糖新生とグリコーゲン分解 日紫喜光良 基礎生化学講義 2014.06.3 1 主な項目 I. 糖新生と解糖系とで異なる酵素 II. 糖新生とグリコーゲン分解の調節 III. アミノ酸代謝と糖新生の関係 IV. 乳酸 脂質代謝と糖新生の関係 2 糖新生とは グルコースを新たに作るプロセス グルコースが栄養源として必要な臓器にグルコースを供給するため 脳 赤血球 腎髄質 レンズ 角膜 精巣 運動時の筋肉

More information

<4D F736F F D B4389F D985F F4B89DB91E88250>

<4D F736F F D B4389F D985F F4B89DB91E88250> 電気回路理論 II 演習課題 H30.0.5. 図 の回路で =0 で SW を on 接続 とする時 >0 での i, 並びに を求め 図示しなさい ただし 0 での i, 並びに を求めなさい ただし 0 とする 3. 図 3の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i,

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

細胞の構造

細胞の構造 大阪電気通信大学 5/8/18 本日の講義の内容 酵素 教科書 第 4 章 触媒反応とエネルギーの利用 酵素の性質 酵素反応の調節 酵素の種類 触媒の種類 無機物からなる無機触媒と有機物からなる有機触媒がある 触媒反応とエネルギーの利用 1 無機触媒の例 過酸化水素水に二酸化マンガンを入れると過酸化水素水が分解して水と酸素になる 2 有機触媒の例 細胞内に含まれるカタラーゼという酵素を過酸化水素水に加えると

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft PowerPoint - 多成分系の熱力学.pptx

Microsoft PowerPoint - 多成分系の熱力学.pptx /7/ 目次 第 3 回講義資料 I. 一成分系の熱力学の復習 II. III. 化学ポテンシャルの導入 相平衡 I. 成分溶液の混合. 化学平衡多成分系の熱力学への拡張と幾つかの基本的な熱力学の問題への応用 I. 一成分系の熱力学の復習. 熱力学の第一法則と第二法則. カルノーサイクル 3. エントロピー 4. 自由エネルギー 5. 熱力学ポテンシャルとマクスウェルの関係式 熱力学の応用にとって最も重要な役割を果たすのが熱力学ポテンシャルであり

More information

解糖系でへ 解糖系でへ - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 AT AT リン酸化で細胞外に AT 出られなくなる 異性化して炭素数 AT の分子に分解される AT 2 ホスホエノール AT 2 1

解糖系でへ 解糖系でへ - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 - リン酸 - リン酸 1,-2 リン酸 ジヒドロキシアセトンリン酸 AT AT リン酸化で細胞外に AT 出られなくなる 異性化して炭素数 AT の分子に分解される AT 2 ホスホエノール AT 2 1 糖質の代謝 消化管 デンプン 小腸 肝門脈 AT 中性脂肪コレステロール アミノ酸 血管 各組織 筋肉 ムコ多糖プリンヌクレオチド AT 糖質の代謝 糖質からの AT 合成 の分解 : 解糖系 と酸化的リン酸化嫌気条件下の糖質の分解 : 発酵の合成 : 糖新生 糖質からの物質の合成 の合成プリンヌクレオチドの合成 : ペントースリン酸回路グルクロン酸の合成 : ウロン酸回路 糖質の代謝 体内のエネルギー源

More information

木村の理論化学小ネタ 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関

木村の理論化学小ネタ   熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関係を扱う化学の一部門を熱化学という 発熱反応反応前の物質のエネルギー 大ネルギ熱エネルギーー小エ反応後の物質のエネルギー 吸熱反応 反応後の物質のエネルギー 大ネルギー熱エネルギー小エ反応前の物質のエネルギー

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 酵素 : タンパク質の触媒 タンパク質 Protein 酵素 Enzyme 触媒 Catalyst 触媒 Cataylst: 特定の化学反応の反応速度を速める物質 自身は反応の前後で変化しない 酵素 Enzyme: タンパク質の触媒 触媒作用を持つタンパク質 第 3 回 : タンパク質はアミノ酸からなるポリペプチドである 第 4 回 : タンパク質は様々な立体構造を持つ 第 5 回 : タンパク質の立体構造と酵素活性の関係

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

1 演習 :3. 気体の絶縁破壊 (16.11.17) ( レポート課題 3 の解答例 ) ( 問題 3-4) タウンゼントは平行平板電極間に直流電圧を印加し, 陰極に紫外線を照射して電流 I とギ ャップ長 d の関係を調べ, 直線領域 I と直線から外れる領域 II( 図 ) を見出し, 破壊前前駆電流を理論的 に導出した 以下の問いに答えよ (1) 領域 I における電流 I が I I expd

More information

MM1_02_ThermodynamicsAndPhaseDiagram

MM1_02_ThermodynamicsAndPhaseDiagram 2.9 三元系の平衡 現実に用いられている実用合金の多くは 3 つ以上の成分からなる多元系合金であ る 従って 三元系状態図を理解することは 非常に重要である 前節までの二元系 状態図の場合の考え方は 基本的に三元以上の系にも適用できる Fig.2.46 Gibbs の三角形 三元合金の組成は Fig.2.46 に示す正三角形 (Gibbs の三角形 ) 上に示すことができる 三角形の各頂点は それぞれ

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

ほうっておけない統計力学

ほうっておけない統計力学 ほうっておけない統計力学 発表者紹介 花里太郎 慶應義塾大学理工学部物理学科 3 年 Q1: なぜいま 統計力学? 少し統計力学を復習したくなったから 熱 ( 力 ) 学について熱く語った 次は統計力学? ( 統計力学いつやるの? 今でしょ ) 統計力学はラスボス! 統計力学をこう教えてほしかった という思いもあったから なぜ S = k B log W にたどり着いたのか? Q2: 統計力学は最強の学問ですか?

More information

スライド 0

スライド 0 熱 学 Ⅲ 講義資料 化学反応のエクセルギー解析 京都 芸繊維 学 学院 芸科学研究科機械システム 学部 耕介准教授 2014/5/13 2014/5/9 1/23 なぜ, 化学反応を伴うエクセルギーを学ぶのか?? 従来までに学んだ熱 学 エンジンやガスタービンの反応器は, 外部加熱過程 ( 外部から熱を加える過程 ) に置き換えていた. 実際には化学反応を伴うため, 現実的. 化学反応 を伴う熱

More information

超伝導状態の輸送方程式におけるゲージ不変性とホール効果

超伝導状態の輸送方程式におけるゲージ不変性とホール効果 超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

平成 29 年度大学院博士前期課程入学試験問題 生物工学 I 基礎生物化学 生物化学工学から 1 科目選択ただし 内部受験生は生物化学工学を必ず選択すること 解答には 問題ごとに1 枚の解答用紙を使用しなさい 余った解答用紙にも受験番号を記載しなさい 試験終了時に回収します 受験番号

平成 29 年度大学院博士前期課程入学試験問題 生物工学 I 基礎生物化学 生物化学工学から 1 科目選択ただし 内部受験生は生物化学工学を必ず選択すること 解答には 問題ごとに1 枚の解答用紙を使用しなさい 余った解答用紙にも受験番号を記載しなさい 試験終了時に回収します 受験番号 平成 29 年度大学院博士前期課程入学試験問題 生物工学 I から 1 科目選択ただし 内部受験生はを必ず選択すること 解答には 問題ごとに1 枚の解答用紙を使用しなさい 余った解答用紙にも受験番号を記載しなさい 試験終了時に回収します 受験番号 問題 1. ( 配点率 33/100) 生体エネルギーと熱力学に関する以下の問に答えなさい (1) 細胞内の反応における ATP 加水分解時の実際の自由エネルギー変化

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

木村の理論化学小ネタ   緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

June 11, 2007

June 11, 2007 6. 開いた系と化学ポテンシャル ここまでは粒子数は一定に保たれた系を考えたが 本章では粒子の出入りを考えて平衡を考える Jue 0 6- 化学ポテンシャル 粒子の出入りを考慮するために 化学ポテンシャルという概念を導入する 粒子数が変わる系の熱平衡 つの領域の間で粒子が行き来するとする (6.) 各領域の自由エネルギーを とおくと 全系の自由エネルギーは (6.) + = ( 一定 ) 図 6-

More information

シトリン欠損症説明簡単患者用

シトリン欠損症説明簡単患者用 シトリン欠損症の治療 患者さんへの解説 2016-3-11 病因 人は 健康を維持するために食物をとり 特に炭水化物 米 パンなど 蛋白質 肉 魚 豆など 脂肪 動物脂肪 植物油など は重要な栄養素です 栄養は 身体の形 成に また身体機能を維持するエネルギーとして利用されます 図1に 食物からのエ ネルギー産生経路を示していますが いずれも最終的にはクエン酸回路を介してエネル ギー ATP を産生します

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

Microsoft Word - SM-HO C0

Microsoft Word - SM-HO C0 統計力学講義ノート ( 年夏学期 ).4.8 by I. Kamiya 統計力学で何を学ぶか世の中の微視的な現象は確率 統計で決まっている ( 量子力学とはまた別の意味で ) これを合わせた形で集合体の性質は決まる これまで習ってきた古典力学 熱学等は集合体もしくは質点の性質のみ電子物性 複雑系の研究には必須熱力学の基礎的理解にも必須. 統計力学とは何か?. 基本概念アンサンブル エントロピー (

More information

木村の有機化学小ネタ 糖の構造 単糖類の鎖状構造と環状構造 1.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 1953 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が

木村の有機化学小ネタ   糖の構造 単糖類の鎖状構造と環状構造 1.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 1953 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が 糖の構造 単糖類の鎖状構造と環状構造.D と L について D-グルコースとか L-アラニンの D,L の意味について説明する 9 年右旋性 ( 偏光面を右に曲げる ) をもつグリセルアルデヒドの立体配置が X 線回折実験により決定され, 次の約束に従い, 構造式が示された 最も酸化された基を上端にする 上下の原子または原子団は中心原子より紙面奥に位置する 左右の原子または原子団は中心原子より紙面手前に位置する

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 応用微生物学 ( 第 2 回 ) アルコール 微生物による物質生産のための Driving Force 1. ガス状分子の放出 2. 不可逆的反応あるいはポリマー化反応の存在 3.Futile cycle による ATP の消費あるいは ATP シンターゼの破壊 (ATP 生成が関与している場合 ) 4. 外部 sink への電子授受 5. 相分離による生産物除去 Appl. Environ. Microbiol.,

More information