ハートレー近似(Hartree aproximation)
|
|
|
- ことこ みつだ
- 7 years ago
- Views:
Transcription
1 ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree ppt
2 (0) ハミルトニアンの期待値の変分と シュレディンガー方程式が等価であること 規格化条件 極値問題 Ψ * ( x) Ψ ( x) dx = 1 (0.1) 0 = δ ( x ) ( xdx ) Ψ Ψ (0.) * ˆ 条件付極値問題に対するラグランジュの未定乗数法 ( E : 未定乗数 ) = δ Ψ ˆ Ψ Ψ Ψ * * 0 ( x ) ( xdx ) E ( x) ( xdx ) (0.3) = δψ xˆψ xdx+ Ψ xˆ δψ xdx * * 0 ( ) ( ) ( ) ( ) δψ ( ) Ψ( ) Ψ ( ) δψ( ) * * E x x dx E x x dx ( x) ˆ ( x) E ( x) dx ( x) ˆ E ( x) ( x) dx (0.4) * * * = δψ Ψ Ψ + Ψ Ψ δψ
3 δ Ψ * ( x) とδ Ψ( x) は独立な変分であるから それぞれの ( 係数 ) はゼロである ˆΨ( x) EΨ ( x) = 0 ˆΨ ( x) = EΨ( x) (0.5) δ Ψ( x) についても同様に ( ) ˆ ( ) 0 * * Ψ x EΨ x = である しかし 両辺のエルミート共役を考えると ˆ * ( ) ( ) 0 Ψ x E Ψ x = となる また ˆ = ˆ, E = E * であるので ˆΨ( x) EΨ ( x) = 0 ˆΨ ( x) = EΨ( x) (0.6) となり 式 (0.5) と等しくなる
4 1. 独立粒子近似という考え方 1 中心 1 電子系は 自然系としては 解析的に解かれる唯一の量子系である 多電子系のシュレディンガー方程式は解析的に解くことはできず 数値的にも厳密解は得られていない 多電子系は電子の集合体であるから 1) その中の 1 つの電子に着目して 他の電子からの影響 ( クーロン相互作用 ) を何らかの形で取り込んだ上で その電子の波動関数 ( 軌道関数 ) を計算できれば ) 各電子に対して計算した波動関数を最後に合成することにより 全電子系の波動関数を ( 近似的に ) 計算できるだろう というアイデア
5 . 電子系に対するハートリー近似 多電子系に対する自己無撞着平均場近似 反対称性は考慮されていない 半導体へテロ界面における 次元電子系ではよい近似 方向には平面波 自由電子的運動 ) それに直交した方向には量子閉じ込め 量子ドットなど閉じ込められた有限電子系ではあまりよくない近似
6 e 原子中の 電子状態ー外場の中の相互作用する同種 粒子系ー 電子 r r r 1 1 電子 相互作用ポテンシャル e r 1 r 1 r r1 = r1 r = r1 + r r1 r = r + r rr cos( r, r ) e 核 静止 近似 重心運動と相対運動の分離が容易ではない
7 ( 外場 V の下の )1 電子に対するハミルトニアンとシュレディンガー方程式 e h1 Δ 1+ V( r1), h Δ + V( r), V( r) (1.1) m m r (4πε = 1 という単位系を採用 ) (0) (0) h1φ ( r1) = Eφ ( r1), 量子状態 ( n,, m) (1. ) (0) (0) h φ ( r ) = E φ ( r ), 量子状態 b ( n,, m ) (1. b) b b b b b b 相互作用する 電子系のハミルトニアン Φ ˆ e h1 + h + V1; V1 (.) r 電子系に対する近似的な波動関数 ( ハートリー積 ) 1 1 b ' ' b b' bb' 1 ( r, r ) φ ( r) φ ( r ) (.3 ) φ φ = δ, φ φ = δ (.3 b) 0 まだ未定の一電子状態を用いて!! φ ( r), φ ( r ) 1 b 既知とする
8 電子系のハミルトニアンの期待値をエネルギー一定条件の下で極値を考える 未定乗数を E とするラグランジュの未定乗数法を用いると ) * 0 δ ˆ = Φ ( r1, r)( E ) Φ ( r1, r) drdr 1 * ˆ = δφ ( r1, r)( E ) Φ ( r1, r) drdr 1 + Φ ( r, r )( ˆ E ) δφ ( r, r ) drdr (.4) δφ * ( r, r ) とδΦ ( r, r ) * 1 1 ここでは変分 は互いに独立な変分であるから どちら一方の変分を考えればよい * ˆ 0 = δφ ( r1, r)( E ) Φ ( r1, r) drdr 1 * * * * ˆ = δφ( r1) φb( r) + φ( r1) δφb( r) ( E ) φ( r1) φb( r) dr1dr (.5) δφ * ( r, r ) 1 を考えると
9 さらに δφ ( r), δφ ( r ) * * 1 b は互いに独立な変分であるから どちらか一方を考慮 * すればよく δφ ( r ) の係数をゼロとおくと 次式が得られる * 0 = φb( r)( h1+ h+ V1 E ) φ( r1) φb( r) dr { } { } * * = h1+ φb( r) hφb( r) dr + φb( r) V1φb( r) dr E φ( r1) (.6) 1 ここで { * ε' } b φb( r) h φb( r) dr φb h φb, (.7 ) * V 1 φ V1 φ φ ( r ) V1φ ( r ) dr, (.7 b) ε E b b b { } b ε', (.7c) b 電子 1 に対するハートリー方程式が得られる ( ) h1 + V 1 φ( r1) = εφ( r1) (.8) 電子 1に対するハートリーポテンシャル 他の電子 ( 今は電子 だけ ) の影響 ( 電子 1 と の相互作用 ) を 他の電子の存在確率密度をかけて積分 (= 平均化 )
10 同様に * δφ ( r ) の係数をゼロとおくと 次式が得られる * 0 = φ( r1)( h1+ h+ V1 E ) φ( r1) φb( r) dr1 { } { } * * = h+ φ() r1 h1φ() r1 dr1 + φ() r1v1φ() dr1 E φ() r1 (.9) ここで { * ε' } φ( r1) h1φ( r1) dr1 φ h1 φ, (.10) * V φ V1 φ ( r1) V1 φ φ( r1) dr1 ε b E { }, (.10 b) ε ', (.10 c) b 電子 に対するハートリー方程式が得られる ( ) h + V φb( r ) = εbφb( r) (.11) 相互作用だから V = V 電子 に対するハートリーポテンシャル 他の電子 ( 今は電子 1 だけ ) の影響 ( 電子 1 と の相互作用 ) を 他の電子の存在確率密度をかけて積分 (= 平均化 ) ij ji
11 電子系におけるハートリー方程式 ( 全系のハミルトニアン期待値を極小にする一粒子状態を決める ) Δ 1+ Ur ( 1) φ( r1) = εφ( r1) m U ( e * r1 ) + φb( r) φb( r) dr r 1 r1 e = + V r1 1 e 外部ポテンシャル 電子 1 に対する自己無撞着ポテンシャル Φ が決まるまで未定のはず!! ( 狭義の ) 自己無撞着ポテンシャル 電子 1に対する電子 の電荷分布による斥力ポテンシャル
12 電子 に対するハートリー方程式 Δ + Ur ( ) φ ( ) = m Ur ( ) e + r ( b r εφb r e r 1 φ * ) ( r) φ ( r) dr 電子 に対する自己無撞着ポテンシャル Φ が決まるまで未定のはず!! 電子 に対する電子 1の電荷分布による斥力ポテンシャル
13 E 電子系の基底状態の全エネルギー Φ ˆ Φ = Φ h 1+ h + V 1 Φ = Φ h 1+ V1 Φ + Φ h + V1 Φ Φ V1 Φ e = ε ε φ φ φ φ * * + b ( r1) b( r) ( r1) b( r) dr1dr r1 E ε + εb 電子間相互作用の二重勘定の除去
14 自己無撞着解法の手順 ( 狭義の ) 自己無撞着ポテンシャルの適当な関数形を仮定する (0) ( ) U r j φ (0) ( r ) φ j U U (0) ( rj ) ( j = 1,) というポテンシャルをもつハートリー方程式を解く ( n) ( n+ 1) φ ( r ), ε (0) (0) j を用いて 自己無撞着ポテンシャルを計算する (1) ( ) U r j のように n 番目の rtree 解を用いて (n+1) 番目のポテンシャルを計算し 予め設定した 次のような 収束半径 δ を用いた収束判定条件を満たすまで計算を反復する ( n ) ( n+ 1) φ φ < δ
15 3.3 電子系に対するハートリー近似 相互作用する 3 電子系のハミルトニアン ˆ e h1+ h + h3 + ( V1 + V13 + V 3); V1, etc (3.1) r h i V ij hi V = + = + i= 1 1= i< j i= 1 i, j 3 ij V 1 相互作用だから V = V ij V = V ji = V 電子系に対する近似的な波動関数 ( ハートリー積 ) Φ ( r, r ) φ ( r) φ ( r ) φ ( r ) (3. ) 1 1 b c 3 φ φ = δ, φ φ = δ φ φ = δ (3. b) ' ' b b' bb' c c' cc' V = V 3 3
16 電子系と同様にして 条件付変分を考える 変分 δφ * より 0 = φφ b c h1+ h + h3+ ( V1 + V13 + V 3) E φφ b c φ = h 1+ φb h φb + φc h3 φc + φb V1 φb + φc V13 φc + φφ b c V 3 φφ b c E ε' φ h φ, ε' φ h3 φ (3.4) b b b c c c ε E ε' ε', (3.5) b c (3.3) 3 電子系におけるハートリー ポテンシャルを導入する V 1 φ ( V1 + V13) φ = φ V1j φ, (3.6 ) j V φ V j φ, V 3 φ V 3j φ.(3.6 b) b b c c j j 3 3 相互作用だから V ij = V ji
17 電子,3 に対しても 同様にして 3 電子系におけるハートリー方程式が得られる h 1+ V1 φ ( r1) = ε φ ( r1), (3.7 ) ( ) ( ) ( ) 次のように まとめて表記することもできる : ( ) hi + V i φ ( ri) = ε ( i), (3.8) i φ i r i 3 V i = φ V ij φ,( 1, b, 3 c)(3.9) j i h + V φ r = r b b( ) εbφb( ), (3.7 ) h3+ V 3 φ r = r c c( 3) εcφc( 3), (3.7 ) i i
18 3 電子系の基底状態エネルギー ( ハートリー近似 ) E Φ Φ = φφφ b c h1+ h + h3 + ( V1 + V13 + V 3) φφφ b c = φ h 1 φ + φ h φ + φ h3 φ b b c c + φ φ V 1 φ φ + φ φ V13 φ φ + φ φ V 3 φ φ b b c c b c b c = φ h1 + φb V 1 φb + φc V 13 φ c φ + φ b h + φ V 1 φ + φc V 3 φ c φ b + φ c h3 + φ V 31 φ + φb V 3 φ b φ c φφ V 1 φφ φφ V 13 φφ φφ V 3 φφ b = φ ( h ) i + V i φ φ V i φ i i i i i= 1 i= E = ε + ε + ε φ V i φ b c c b c b c b c i i= 1 i (3.10)
19 参考文献 [1] 小出昭一郎 量子力学 (II) ( 改訂版 ) 裳華房,1990 年 [] 武次徹也 平尾公彦 早分かり分子軌道法 裳華房,003 年 [3] 大野公男 量子化学 裳華房
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
多体系の量子力学 ー同種の多体系ー
スピンに依存する有効相互作用の発現と化学結合のしくみ 巨視的な物体の構造にとって 基本的な単位になるのは原子または分子であり 物性の基礎にあるのは原子または分子の性質である. ボルン オッペンハイマー近似. He 原子中の 電子状態 ( 中心 電子系 ) 外場の中の同種 粒子系ー. 電子間相互作用のない場合. 電子間相互作用がある場合.3 電子系の波動関数は全反対称.4 電子系のスピン演算子の固有関数と対称性.5
物性基礎
水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =
ハートリー・フォック(HF)法とは?
大学院講義 電子相関編 阿部穣里 目的 電子相関法はハートリー フォック (F) 法に対してより良い電子状態の記述を行う理論です 主に量子化学で用いられるのが 配置換相互作用 (CI) 法多体摂動論 (PT) 法クラスター展開 (CC) 法です 電子相関法に慣れるために 最小基底を用いた 分子の Full CI 法と MP 法について 自ら導出を行い エクセルでポテンシャル曲線を求めます アウトライン
Microsoft PowerPoint - 11JUN03
基礎量子化学 年 4 月 ~8 月 6 月 3 日第 7 回 章分子構造 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 -ail:[email protected] URL:http://abio.abio.u-fukui.a.p/phyhe/aea/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人 章原子構造と原子スペクトル 章分子構造 分子軌道法
三重大学工学部
反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は
Microsoft PowerPoint - 卒業論文 pptx
時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (
多次元レーザー分光で探る凝縮分子系の超高速動力学
波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 [email protected] ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =
Microsoft PowerPoint - qchem3-9
008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理
Microsoft Word - 量子化学概論v1c.doc
この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式
<4D F736F F D FCD B90DB93AE96402E646F63>
7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k
Microsoft Word - 8章(CI).doc
8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock
Microsoft Word - 5章摂動法.doc
5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である
5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と
Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,
Microsoft Word - note02.doc
年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm
Microsoft PowerPoint - 第2回半導体工学
17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html
<4D F736F F F696E74202D2091E688EA8CB4979D8C768E5A B8CDD8AB B83685D>
第一原理計算法の基礎 固体物理からのアプローチを中心に 第一原理計算法とは 原子レベルやナノスケールレベルにおける物質の基本法則である量子力学 ( 第一原理 ) に基づいて, 原子番号だけを入力パラメーターとして, 非経験的に物理機構の解明や物性予測を行う計算手法である. 計算可能な物性値 第一原理計算により, 計算セル ( 原子番号と空間座標既知の原子を含むモデル ) の全エネルギーと電子のエネルギーバンド構造が求まる.
三重大学工学部
量子化学 : 量子力学を化学の問題に適用分子に対する Schödige 方程式を解く ˆ Ψ x, x, x,, x EΨ x, x, x,, x 3 N 3 Ĥ :milto 演算子 Ψ x, x, x,, x : 多電子波動関数, 3 N 反応理論化学 ( その ) E : エネルギー一般の多原子分子に対して厳密に解くことはできない N x : 電子の座標 ( 空間座標とスピン座標 ) Schödige
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン
表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える
2_分子軌道法解説
2. 分子軌道法解説 分子軌道法計算を行ってその結果を正しく理解するには, 計算の背景となる理論を勉強 する必要がある この演習では詳細を講義する時間的な余裕がないので, それはいろいろ な講義を通しておいおい学んで頂くこととして, ここではその概要をごく簡単に説明しよう 2.1 原子軌道原子はその質量のほとんどすべてを占める原子核と, その周囲をまわっている何個かの電子からなっている 原子核は最も軽い水素の場合でも電子の約
H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重
半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding
2012/10/17 第 3 章 Hückel 法 Schrödinger 方程式が提案された 1926 年から10 年を経た 1936 年に Hückel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である Hückel 法は最
//7 第 3 章 ükel 法 Shrödnger 方程式が提案された 96 年から 年を経た 936 年に ükel 法と呼ばれる分子軌道法が登場した 分子の化学的特徴を残しつつ 解法上で困難となる複雑な部分を最大限にカットした理論である ükel 法は最も単純な分子軌道法だが それによって生まれた考え方は化学者の概念となって現在に生き続けている ükel 近似の前提 ükel 近似の前提となっている主要な近似を列挙する
ニュートン重力理論.pptx
3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間
Microsoft PowerPoint _量子力学短大.pptx
. エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は
Microsoft PowerPoint - qchem3-11
8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為
Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m
Laplace2.rtf
=0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,
ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限
: Email: [email protected], D38 0 08 5 S = k B ln W ) W n [] [] 5 N. 6 d h m dx ϕ nx) = E n ϕ n x) ) L 5 ϕ n x = 0) = ϕ n x = L) = 0, N k n ϕ n = N sink n x), E n = h k n m 3) k n = nπ, n =,,
Microsoft PowerPoint - siryo7
. 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/
解析力学B - 第11回: 正準変換
解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
Microsoft PowerPoint - 東大講義09-13.ppt [互換モード]
物性物理学 IA 平成 21 年度前期東京大学大学院講義 東京大学物性研究所高田康民 2009 年 4 月 10 日 -7 月 17 日 (15 回 ) 金曜日 2 時限 (10:15-11:45) 15 11 理学部 1 号館 207 号室 講義は自己充足的 量子力学 ( 第 2 量子化を含む ) 統計力学 場の量子論のごく初歩を仮定 最後の約 10 分間は関連する最先端の研究テーマを雑談風に紹介する
図 1 3 次元単純立方ブラベ 格子 図 2 体心立方ブラベー格子の格子点 図 3 体心立方ブラベー格子の 3 個の基本 ベクトル 点 P は P=-a 1 -a 2 +2a 3 図 4 体心立方ブラベー格子の基本ベクト ル点 P は P=2a 1 +a 2 +a 3 第 2 節 逆格子 前節で定義
バンドでみる固体の中の電子 岡山大学理学部物理学科 4 回生 上村直樹 バンド理論 は 1920 年代における量子力学の完成以降 量子力学の固体結晶系への応用を目指して繰り広げられた理論研究分野である 固体中電子に対する現代的な理論の基礎をなすものであり それは結晶構造の周期性に関する考察から始まる この周期性がバンドの形成へとつながるのである その際に根底にある仮定は 電子間相互作用のすべてが 独立な電子近似によって説明されうるとすることである
: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =
1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
Microsoft PowerPoint - 複素数.pptx
00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具
超伝導状態の輸送方程式におけるゲージ不変性とホール効果
超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
Microsoft PowerPoint - qchem3-12
8 年度冬学期 量子化学 Ⅲ 3 章全体のまとめ 9 年 月 日 担当 : 常田貴夫准教授 主要テーマの変遷 年主要テーマ理論化学のトピック科学技術のトピック 196 1937 量子力学の基礎理論構築 HF 法 経験法 V 法 摂動法 固体論 反応論など 1938 1949 原子爆弾関連反応速度論など 195-196 1961-1968 1969-1984 1985-1995 1996 5 量子論
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
第9章
第 9 章光の量子化これまでは光を古典的電磁波として扱い 原子を量子力学システムとして与え 電磁波と原子に束縛された電子との相互作用ポテンシャルを演算子で表現した この表現の中で電磁波の電場はあくまでも古典的パラメータとして振舞う ここでは この電磁波も量子力学的システム ; 電場と磁場をエルミート演算子で与える として表現する その結果 電磁波のエネルギー密度や運動量密度なども演算子として表せれる
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
工業数学F2-04(ウェブ用).pptx
工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数
<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>
力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を
Microsoft Word - 1-5Wd
第 5 章水素原子の Schödinge 方程式の解と原子軌道水素原子に関する Schödinge 方程式を解くと, 複数個の固有関数と固有値の組が得られま す. 固有値と固有関数は, 電子がその関数を占めたときのエネルギーと電子の情報を持つ波動関数です. これらを原子軌道 (atomic( obitals) および軌道エネルギー (obital enegy) とよびます. 原子軌道 ( 軌道エネルギー
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft PowerPoint - 11MAY06
基礎量子化学 年 4 月 ~8 月 5 月 6 日第 4 回 章原子構造と原子スペクトル 3 分光学的遷移と選択律 多電子原子の構造 4 オービタル近似 (b) パウリの排他原理 (c) 浸透と遮蔽 (d) 構成原理 (Aufbu pincipe) (f) イオン化エネルギーと電子親和力 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授 前田史郎 E-mi:[email protected]
Microsoft PowerPoint - 16MAY12.ppt
無機化学 水曜日 時間目 M 講義室第 5 回 5 月 6 日 年 月 ~ 年 8 月 量子力学の基本原理 並進運動 : 箱の中の粒子 トンネル現象 振動運動 : 調和振動子 回転運動 : 球面調和関数 担当教員 : 福井大学大学院工学研究科生物応用化学専攻 教授前田史郎 -ail:[email protected] UR:ttp://acbio.acbio.u-fukui.ac.jp/pc/aa/kougi
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未
力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Microsoft PowerPoint EM2_15.ppt
( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続
相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする
相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度
スライド 1
暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx
平面波
平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.
耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る
格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています
平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題
化学 Ⅰ- 表紙 平成 31 年度神戸大学大学院理学研究科化学専攻入学試験 化学 Ⅰ 試験時間 10:30-11:30(60 分 ) 表紙を除いて 7 ページあります 問題 [Ⅰ]~ 問題 [Ⅵ] の中から 4 題を選択して 解答しなさい 各ページ下端にある 選択する 選択しない のうち 該当する方を丸で囲みなさい 各ページに ( 用紙上端 ) と ( 用紙下端 ) を記入しなさい を誤って記入すると採点の対象とならないことがあります
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
09.pptx
講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.
電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g
電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()
三重大学工学部
反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +
Microsoft PowerPoint - 11MAY25
無機化学 0 年 月 ~0 年 8 月 第 5 回 5 月 5 日振動運動 : 調和振動子 担当教員 : 福井大学大学院工学研究科生物応用化学専攻准教授前田史郎 E-mail:[email protected] URL:http://acbio.acbio.u-fukui.ac.jp/phchem/maeda/kougi 教科書 : アトキンス物理化学 ( 第 8 版 ) 東京化学同人主に8
SPring-8ワークショップ_リガク伊藤
GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8
Microsoft Word - 非線形計画法 原稿
非線形計画法条件付き最適化問題は目的関数と制約条件で示すが この中に一つでも 次式でないものが含まれる問題を総称して非線形計画法いう 非線形計画問題は 多くの分野で研究されているが 複雑性により十分汎用的なものは確立されておらず 限定的なものに限り幾つかの提案がなされている ここでは簡単な解法について紹介する. 制約なし極値問題 単純問題の解法 変数で表される関数 の極値は を解くことによって求められる
応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)
偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -
2016年度 京都大・文系数学
06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ xy 平面内の領域の面積を求めよ x + y, x で, 曲線 C : y= x + x -xの上側にある部分 -- 06 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ ボタンを押すと あたり か はずれ のいずれかが表示される装置がある あたり の表示される確率は毎回同じであるとする この装置のボタンを 0 回押したとき,
PowerPoint Presentation
半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 11//'11 1 1. 復習 : 基本方程式 キャリア密度の式フェルミレベルの位置の計算ポアソン方程式電流密度の式 連続の式 ( 再結合 ). 接合. 接合の形成 b. 接合中のキャリア密度分布 c. 拡散電位. 空乏層幅 e. 電流 - 電圧特性 本日の内容 11//'11 基本方程式 ポアソン方程式 x x x 電子 正孔 キャリア密度の式
Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson
量子情報基礎 阿部英介 慶應義塾大学先導研究センター 応用物理情報特別講義 A 216 年度春学期後半金曜 4 限 @14-22 Information is physical. Rolf Landauer It from bit. John Wheeler I think there is a world market for maybe five computers. Thomas Watson
Microsoft PowerPoint - qcomp.ppt [互換モード]
量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??
低次元フェルミ系における集団励起と熱電輸送
低次元フェルミ系におけ る集団励起と熱電輸送 栗原進研究室博士課程 3 年吉元広行 研究課題 低次元フェルミ粒子系での集団励起 について興味深い現象を探る Ⅰ1 次元電荷密度波での熱電輸送 Ⅱ 次元調和ポテンシャル中の中性フェルミ気体の集団励起 Ⅰ1 次元電荷密度波での熱電輸送 熱電輸送と電荷密度波 背景 電荷密度波 モデルと計算手法 Fröhlich ハミルトニアン 摂動計算 結果と考察 熱起電力
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
PowerPoint プレゼンテーション
電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量
<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>
1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
