気体の性質-理想気体と状態方程式 

Size: px
Start display at page:

Download "気体の性質-理想気体と状態方程式 "

Transcription

1 自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://

2 クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関 C < η カルノ- η カルノ 非可逆 + < 0 2 可逆 0 2 サイクル 熱源が多くある場合 n i d' n i クラウジウスの式 i ( 無限にある場合 ) 2

3 エントロピーの定義 ある一つのが 状態 A から平衡状態を保ちつつ準静的に経路 Ⅰを経て状態 B へ変化する可逆過程 Ⅰと経路 Ⅰとは異なる経路 Ⅱによる可逆過程 Ⅱを仮定する このとき A> B(II) A> B(I) 可逆サイクル + B> A(II) I A B> A(II) B II 0 A のクラウジウスの式 A> B(I) A> B(II) 経路に関係しない量 A> B 状態 A を基準にした状態 B のエントロピー

4 エントロピーと第 法則 近接した 2 つの状態 B と B を考える ( B ) ( B' ) A> B A> B 熱力学の第 法則 + ( B' ) ( B ) ( B' ) B> B ' B> B ' A> B ' ( B ) + B> B ' d d d du + d d du + d

5 エントロピー増大の法則 経路 Ⅰ が不可逆過程 経路 Ⅱ が可逆過程とする このとき B> A(II) A> B(I) + B> A(II) ( A ) ( B ) < 0 A> B(I) < ( B ) ( A ) 状態 A から状態 B への不可逆変化ではエントロピー増加量 (B)-(A) は d A> B(I) ' / より大きい 断熱的 (d 0) な不可逆変化ではエントロピーは増大する 自然界で生じる自発的変化はすべて有限の時間内で進む不可逆過程 宇宙で起こる変化は必ずエントロピーの増大を伴う

6 自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 6 回講義担当奥西みさき 講義資料は研究室の Web に掲載 htt://

7 自由エネルギーとは 断熱 ( 孤立 ) において自発的に進行する変化は不可逆変化でエントロピーは必ず増大する エントロピーの増減から自発的変化の方向を判断できる 外界とエネルギー交換が可能なでは外界を含めた全体のエントロピー変化を判断しなければならない 自由エネルギーは外界のエントロピー変化を評価せずにだけで自発的変化の方向を判断するために導入される熱力学的関数

8 ギブスの自由エネルギーによる自発的変化の評価 一定温度 で外界からに熱量 が移ったとするこのとき外界が失った熱量 外とが得た熱量 は等しい 外界のエントロピー変化 : 全体のエントロピーの変化 : 外 全 外 外 + 等温 等圧でののエンタルビー変化 : H 全 H 全 H 自発的な不可逆変化では > 0 ΔG H 不可逆変化では Δ < 0 全 または H < 0 G H ギブスの自由エネルギー G 可逆変化では Δ G 0 ( 定温 定圧 )

9 ヘルムホルツの自由エネルギーによる自発的変化の評価 一定体積 での変化を考える このとき外界からうけとった熱量 はの内部エネルギーの増加に等しい の内部エネルギーの変化 : ΔU ΔH > ΔU ΔG > ΔF ΔF U または F U ヘルムホルツの自由エネルギー 不可逆変化では Δ F < 0 可逆変化では Δ F 0 ( 定温 定積 ) ( 定温 定積 )

10 ギブスの自由エネルギーと仕事 化学変化にともなうエネルギー ( 化学エネルギー ) はいろいろな形態のエネルギーに変換してから有用な仕事として利用することが多い 例 : 電池を用いて化学エネルギーを電気エネルギーに変え モーターを回して仕事をする 等温 等圧での自由エネルギーの変化 : ΔG H U + W G W 有用 U + から取り出しうる有用な仕事量に等しい G W + W 有用 W有用 は自由エネルギーの減少分 G

11 熱力学関数と状態量 熱力学関数ー熱力学的なの状態量を他の状態量の関数としてあらわしたもの 熱力学的なでの状態量,,,, U, F, G,..etc は互いに独立な変数ではなく それぞれの間にある一定の関係がある 完全な熱力学関数ー熱力学的なの平衡状態の性質とそれらの状態間の遷移について完全な情報を持つ熱力学関数 熱力学の問題は最終的にこの完全な熱力学関数をそれぞれの熱力学変数 ( 状態量 ) の関数として求めることに帰着する

12 熱力学関数 : 内部エネルギー熱力学第 法則 d du d W 絶対温度 一定圧力 一定 d d d W d 内部エネルギーの微小変化 du d d と を独立変数として内部エネルギー U の変化 du を表している が一定のとき U が一定のとき U U U または を一定として考えれば U を用いて または が得られる圧力 のエントロピー に対する変化を絶対温度 の体積 に対する変化と結びつけている

13 熱力学関数 : エンタルピー熱力学第 法則 du + d d d エンタルピーの微小変化 dh d + d と を独立変数としてエンタルピー H の変化 dh を表している が一定のとき H が一定のとき H H H または を一定として考えれば H を用いて または が得られる体積 のエントロピー に対する変化を絶対温度 の圧力 に対する変化と結びつけているエンタルピー H U + dh du + d + d

14 熱力学関数 : ヘルムホルツの自由エネルギー熱力学第 法則 du d d ヘルムホルツの自由エネルギーの微小変化 df d d と を独立変数としてヘルムホルツの自由エネルギー F の変化 df を表している が一定のとき F が一定のとき F F F または を一定として考えれば F を用いて または が得られるエントロピー の体積 に対する変化を圧力 の絶対温度 に対する変化と結びつけているヘルムホルツの自由エネルギー F U df du d d

15 熱力学関数 : ギブスの自由エネルギー と を独立変数としてギブスの自由エネルギー G の変化 dg を表している が一定のとき G が一定のとき G G G または を一定として考えれば G を用いて または が得られるエントロピー の圧力 に対する変化を体積 の絶対温度 に対する変化と結びつけているギブスの自由エネルギー G F + H dg df + d + d d d + d + d d d

16 ギブス ヘルムホルツの式 G ヘルムホルツの自由エネルギー F U U F + F F F U ギブスの自由エネルギー G H H G + G G H

17 マックスウェルの関係式 エントロピー の圧力 に対する変化を体積 の絶対温度 に対する変化と結びつけている エントロピー の体積 に対する変化を圧力 の絶対温度 に対する変化と結びつけている 体積 のエントロピー に対する変化を絶対温度 の圧力 に対する変化と結びつけている 圧力 のエントロピー に対する変化を絶対温度 の体積 に対する変化と結びつけている

18 マックスウェルの関係式の応用例 () マックスウェルの関係式を用いると さまざまな 条件下での式を導出できる 測定不可能な量 (U,, F, G) を測定可能な量 (P,, ) に変形することができる 絶対温度 一定のときのエントロピー に対する圧力 P の変化率絶対温度 一定のときのエントロピー に対する体積 の変化率絶対温度 一定のときのエントロピー に対する内部エネルギー U の変化率 U du d d より

19 マックスウェルの関係式の応用例 (2) エントロピー に対するエンタルピー H の変化率 H + + dh d + d よりエントロピー に対する自由エネルギー F の変化率 F エントロピー に対する自由エネルギー G の変化率 G df d d より dg d d より

20 授業の予定. 熱力学とは?- 熱力学の基礎概念 (4/2 上田 ) 2. 気体の性質 - 理想気体と状態方程式 (4/9 上田 ) 3. 熱力学の第 法則 -エネルギー保存則と理想気体への応用 (4/26 上田 ) 4. 熱力学の第 法則 - 熱機関と熱サイクル (5/0 上田 ) 5. 熱力学の第 2 法則 - 熱力学の第 2 法則と熱機関の効率 (5/7 上田 ) 6. 熱力学の第 2 法則 -エントロピーの導入 (5/24 上田 ) 7. 自由エネルギー (5/3 奥西 ) 8. 中間試験 (6/7) 9. 分子運動論と分配関数 (6/4 奥西 ) 0. 統計力学 (6/2 上田 ). 相平衡 (6/28 奥西 ) 2. 溶液 (7/5 奥西 ) 3. 化学平衡 (7/2 奥西 ) 4. 試験 (7/9) 5. 追試験 (7/26)

21 問題 () mol 温度 300 K の理想気体が 気圧から 0.5 気圧に等温膨張したときのギブスの自由エネルギー変化をもとめよ (R8.3JK - mol - log 20.69) ヒント : 等温では dg d, R から dg R d/ 積分すると? (2) mol の液体が等温 等圧 で気体に相転移するときの気化熱を, 液体から気体への体積変化を Δ とする この相転移にともなう内部エネルギーの変化 ΔU ヘルムホルツの自由エネルギーの変化 ΔF ギブスの自由エネルギーの変化 ΔG を Δ,, を用いて記せ ヒント : 等温等圧では ΔU Δ Δ, ΔF ΔU Δ, Δ /, ΔG? (3) 00 C (373 K) atm の水の蒸発熱は 4 kj/mol である mol の水が atm, 00 C で蒸気に変化する場合の ギブスの自由エネルギー ヘルムホルツの自由エネルギー および内部エネルギーの変化 (J/mol) をもとめよ ただし 水蒸気は理想気体であるとし mol の液体の体積は mol の気体の体積に比べて無視できるとする ヒント : mol の理想気体の atm, 273 K での体積は 22.4L, RP/ atm x 22.4L / 273 K atm L mol - K J K - mol - atm L 00 J と近似して値を求めよ 学籍番号と氏名を書くことを忘れないように

22 問題の解答 () 等温では dg d, R から dg R d/ ΔG R log(p 2 /P )- 8.3x300x0.69.7kJ/mol (2) ΔU Δ, ΔF Δ, ΔG Δ Δ0 (3) Δ22.4 x 373/ L Δatm x 30.6 L/mol 30.6 atml 3 kj/mol ΔU Δ4-338 kj/mol ΔF -3 kj/mol ΔG 0 kj/mol

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

A solution to Problems(物理化学II)Problem5

A solution to Problems(物理化学II)Problem5 A solution to roblems( 物理化学 II)roblem 5 ) Q 0, W 0, Δ 0, ΔU0, nr dg - Sd d より, G - 8.345 298 2.303log(6/) - 4440(J/mol) da - Sd d A - 8.345 298 2.303log(6/) - 4440(J/mol) 2) da - Sd d A ΔA da d, ΔG d R

More information

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h])

(Microsoft PowerPoint _4_25.ppt [\214\335\212\267\203\202\201[\203h]) 平成 25 年度化学入門講義スライド 第 3 回テーマ : 熱力学第一法則 平成 25 年 4 月 25 日 奥野恒久 よく出てくる用語 1 熱力学 (thermodynamcs) 系 (system) 我々が注意を集中したい世界の特定の一部分外界 (surroundngs) 系以外の部分 系 外界 系に比べてはるかに大きい温度 体積 圧力一定系の変化の影響を受けない よく出てくる用語 2 外界との間で開放系

More information

Microsoft PowerPoint - 物理概論_熱力学2_2012.ppt [互換モード]

Microsoft PowerPoint - 物理概論_熱力学2_2012.ppt [互換モード] 物理学概論 II 熱 熱力学 () 知能機械専攻 下条 誠 熱機関 熱の形式でエネルギーが供給される原動機を熱機関という. 熱機関として, 熱 をなるべく多くの仕事 に変えるものが望ましい. : 熱機関の効率 蒸気機関 熱機関の効率 熱 高温熱源 ( ) 燃料を燃やす 高温熱源から低温熱源へ熱が移動するときの熱の差が仕事になる 熱 作業物質 ( 蒸気機関だと水蒸気 ) 低温熱源 ( ) 冷却する 仕事

More information

Hanako-公式集力学熱編.jhd

Hanako-公式集力学熱編.jhd 熱分野 ================================================= E-mail yamato@my.email.ne.j ホームページ htt://www.ne.j/asahi/hanako/hysics/ ================================================= 公式集力学熱編.jhd < 1 > 気体の法則 気体の状態変化

More information

Microsoft PowerPoint - C03-1_ThermoDyn2015_v1.ppt [互換モード]

Microsoft PowerPoint - C03-1_ThermoDyn2015_v1.ppt [互換モード] 計算力学技術者 級 ( 熱流体力学分野の解析技術者 ) 認定試験対策講習会 - 3 章 1 熱力学 伝熱学の基礎 - 認定レベル 認定を取得した技術者は, 基本的な流体力学, 熱力学 ( 伝熱学を含む ) の問題に対して, 単相の非圧縮性流 / 圧縮性流 / 層流 / 乱流の範囲において正しく解析問題を設定することができ, 解析方法の内容を理解しており, さらに解析結果の信頼性を自分自身で検証することができる.

More information

Microsoft PowerPoint - 多成分系の熱力学.pptx

Microsoft PowerPoint - 多成分系の熱力学.pptx /7/ 目次 第 3 回講義資料 I. 一成分系の熱力学の復習 II. III. 化学ポテンシャルの導入 相平衡 I. 成分溶液の混合. 化学平衡多成分系の熱力学への拡張と幾つかの基本的な熱力学の問題への応用 I. 一成分系の熱力学の復習. 熱力学の第一法則と第二法則. カルノーサイクル 3. エントロピー 4. 自由エネルギー 5. 熱力学ポテンシャルとマクスウェルの関係式 熱力学の応用にとって最も重要な役割を果たすのが熱力学ポテンシャルであり

More information

暔棟壔妛墘廗栤戣

暔棟壔妛墘廗栤戣 化学 III 演習問題 1 L = 1dm 3,1 cal = 4.184 J,R = 8.314 J K -1 mol -1 I. 物質の存在状態 1. 原子, 分子の構造について説明せよ キーワード電子, 原子核, 陽子, 中性子, 共有結合, 水分子などの具体的分子 2. 物質の三態について, それぞれの特徴およびそれらの間の違いを説明せよ キーワード固体, 液体, 気体, 構造, 分子の運動状態

More information

スライド 0

スライド 0 熱 学 Ⅲ 講義資料 化学反応のエクセルギー解析 京都 芸繊維 学 学院 芸科学研究科機械システム 学部 耕介准教授 2014/5/13 2014/5/9 1/23 なぜ, 化学反応を伴うエクセルギーを学ぶのか?? 従来までに学んだ熱 学 エンジンやガスタービンの反応器は, 外部加熱過程 ( 外部から熱を加える過程 ) に置き換えていた. 実際には化学反応を伴うため, 現実的. 化学反応 を伴う熱

More information

Microsoft PowerPoint - 第1回(変遷+Rankineサイクル)_H22講義用.ppt

Microsoft PowerPoint - 第1回(変遷+Rankineサイクル)_H22講義用.ppt 演習問題 1-1 容器 V(m ) の容器の中に 1 気圧 (0.1MPa) の飽和水 ( ) と飽和蒸気 ( ) がそれぞれ m (kg) m (kg) づつ入っている m 1000(kg) m 0.1(kg) として 容積 V とこの容器内の流体の内部エネルギー U(J) を求めよ 演習問題 1-2 圧力 0.05(MPa) 比エンタルピ 2000(kJ/kg) の湿り蒸気の乾き度 x とその湿り蒸気の比エントロピ

More information

等温可逆膨張最大仕事 : 外界と力学的平衡を保って膨張するとき 系は最大の仕事をする完全気体を i から まで膨張させるときの仕事は dw d dw nr d, w nr ln i nr 1 dw d nr d i i nr (ln lni ) nr ln これは右図 ( テキスト p.45, 図

等温可逆膨張最大仕事 : 外界と力学的平衡を保って膨張するとき 系は最大の仕事をする完全気体を i から まで膨張させるときの仕事は dw d dw nr d, w nr ln i nr 1 dw d nr d i i nr (ln lni ) nr ln これは右図 ( テキスト p.45, 図 物理化学 Ⅱ 講義資料 ( 第 章熱力学第一法則 ) エネルギーの保存 1 系と外界系 : 注目している空間 下記の つに分類される 開放系 : 外界との間でエネルギーの交換ができ さらに物資の移動も可能閉鎖系 : 外界との間でエネルギーの交換はできるが 物質の移動はできない孤立系 : 外界との間でエネルギーも物質も移動できない外界 : 系と接触している巨大な世界 例えば エネルギーの出入りがあっても

More information

偏微分の定義より が非常に小さい時には 与式に上の関係を代入すれば z f f f ) f f f dz { f } f f f f f 非常に小さい = 0 f f z z dz d d opright: A.Asano 7 まとめ z = f (, 偏微分 独立変数が 個以上 ( 今は つだけ考

偏微分の定義より が非常に小さい時には 与式に上の関係を代入すれば z f f f ) f f f dz { f } f f f f f 非常に小さい = 0 f f z z dz d d opright: A.Asano 7 まとめ z = f (, 偏微分 独立変数が 個以上 ( 今は つだけ考 opright: A.Asano 微分 偏微分 Δ の使い分け 微分の定義 従属変数 = f () という関数の微分を考える は独立変数 熱力学のための数学基礎 U du d Δ: ある状態と他の状態の差を表しています U d : 微分記号 Δ の差が極微小 極限的に 0 の関係を表します : 偏微分記号 変数が つ以上で成り立っている関数で d f ( ) f ( ) lim lim d 0 0

More information

< F2D819A F90B696BD95A8979D89BB8A778169>

< F2D819A F90B696BD95A8979D89BB8A778169> 生命物理化学 系について 熱力学で考える 系 には次の つがある 開いた系 : や物質の出入りがある生物や細胞のような系 閉じた系 : の出入りはあるが, 物質の出入りはない系 孤立系 : 物質やの出入りがない宇宙のような系 ( 熱力学と自由 ) 一定圧で内部に仕事をした場合ピストン 系 ΔU( 内部 E の増加 ) W 仕事 () 一定圧で内部 ( 系 ) に仕事をした 熱量 () 開いた系閉じた系孤立系入れ子構造の開放定常系

More information

では 例えば理想気体が状態 A にあるときの状態を A A =nr A としよう この気体を温度が A 以上の熱源に接触させると 当然温度が上がり もそれに比例して増加する そ して気体が外界に仕事をして状態 B になり B B =nr B に変化したとしよう このとき 理想気体はどれだけの熱量 を

では 例えば理想気体が状態 A にあるときの状態を A A =nr A としよう この気体を温度が A 以上の熱源に接触させると 当然温度が上がり もそれに比例して増加する そ して気体が外界に仕事をして状態 B になり B B =nr B に変化したとしよう このとき 理想気体はどれだけの熱量 を 化学熱力学の基礎 前稿では話が熱の方へ行ってしまった 蒸気機関や内燃機関に代表されるように 熱と仕事は切り離せない 余談だが ピストン型の蒸気機関は今でこそ廃れてしまったが 8 世紀から 9 世紀にかけて産業革命の動力源としての花形であった 今でも大きな発電システムでは ピストン型から蒸気タービン型として形は変えたものの蒸気の力は使い続けられている また 蒸気機関車は 0 世紀前半まで長距離輸送の主役であったし

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 熱力学第一法則 1 物体が他の物体に与える影響 動かす / 止める ふくらませる / しぼませる 温める / 冷やす 明るくする / 暗くする 結合させる / 分解させる 電気を流す / 電気を消費する 機械的エネルギー ( 仕事 ) 熱エネルギー ( 熱量 ) 光エネルギー 化学エネルギー電気的エネルギー 系の内部エネルギーの変化量 ΔU = ( 仕事 )+( 化学エネルギー )+( 電気的エネルギー

More information

第 4 章熱力学第一法則 熱や仕事は移動するエネルギーである 熱エネルギー *1 はエネルギーの 1 つの形態であり, エネルギーとは ギリシャ語で 仕事をする能力 の意味をもつエネルギアが語源とされる. 仕事とは, 力に逆らう動き である. 熱機関は, 化学エネルギー *1 熱とは,

第 4 章熱力学第一法則 熱や仕事は移動するエネルギーである 熱エネルギー *1 はエネルギーの 1 つの形態であり, エネルギーとは ギリシャ語で 仕事をする能力 の意味をもつエネルギアが語源とされる. 仕事とは, 力に逆らう動き である. 熱機関は, 化学エネルギー *1 熱とは, 70 第 4 章熱力学第一法則 現代文明は, 主に石炭, 石油および天然ガスのような化石燃料からのエネルギーに依存している. このエネルギーを取り出す過程で物質の変化が行われ, また力学的エネルギーや電気的エネルギーへの変換などが行われる. 物質の変化には燃焼などの化学変化と, 液体から気体への状態変化がある. 本章では, 物質の変化やエネルギー変換過程における熱の発生や移動を定量的に取り扱うために必要な熱化学の基礎として,

More information

多変数系における

多変数系における 章熱力学の基礎 -1 熱力学関係式熱力学の体系を理解するには変数の定義を明確にすることが大切である 一定量の物質を対象に 熱力学的平衡状態にて 一意的に値が確定する変数は状態変数と呼ばれる 圧力 P, 体積, 温度, およびエントロピー などは状態変数であるが 熱量 Q や仕事 W は状態変数ではない また状態変数には 示量変数 (xtnsv varabl): その変数が量に依存し いわゆる流量もしくは変位量としてイメ

More information

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し,

例題 1 表は, 分圧 Pa, 温度 0 および 20 において, 水 1.00L に溶解する二酸化炭素と 窒素の物質量を表している 二酸化炭素窒素 mol mol mol mol 温度, 圧力, 体積を変えられる容器を用意し, ヘンリーの法則問題の解き方 A. ヘンリーの法則とは溶解度が小さいある気体 ( 溶媒分子との結合力が無視できる気体 ) が, 同温 同体積の溶媒に溶けるとき, 溶解可能な気体の物質量または標準状態換算体積はその気体の分圧に比例する つまり, 気体の分圧が P のとき, ある温度 ある体積の溶媒に n mol または標準状態に換算してV L 溶けるとすると, 分圧が kp のとき, その溶媒に kn

More information

Microsoft PowerPoint - 化学Ⅱ [互換モード]

Microsoft PowerPoint - 化学Ⅱ [互換モード] 化学結合と融点 沸点 結合 物質 融点 沸点 イオン結合 NaCl 801 1467 CaO 2572 2850 共有結合 C 3500 以上 4918 SiO 2 1550 2950 金属結合 Al 660 2486 Fe 1535 2754 ファン デル N 2-210 -196 ワールス結合 CH 4-183 -162 ( 分子間に働く力 ) l 2 114 183 水素結合 HF -83 20

More information

Microsoft PowerPoint - 熱力学前半.ppt [互換モード]

Microsoft PowerPoint - 熱力学前半.ppt [互換モード] 熱 学 授業計画 1) 熱現象と熱力学 2) 状態量と状態方程式 3) 熱力学第 1 法則と内部エネルギー熱現象を巨視的に研究 4) 等温過程と断熱過程 5) カルノーサイクルと熱力学第 2 法則 6) 可逆過程と不可逆過程 7) 熱機関の効率とクラウジウスの不等式 8) 中間試験 9) エントロピーの定義 10) エントロピーの計算方法 11) 不可逆性とエントロピーの確率論的意味 12) エントロピーと微視的状態

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1.2 熱力学の法則 1 エネルギーが移るとき 一部は熱で逃げる ( 熱も含めれば 全エネルギーは保存される ) 自然の法則 なにかが起こる前の物体のエネルギー なにかが起こった後の物体のエネルギー = 他の物体に与える影響 + 熱 これまでに実験的 理論的な反例がない 熱力学第一法則 2 物体が他の物体に与える影響 動かす / 止める ふくらませる / しぼませる 温める / 冷やす 明るくする

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - ‚æ4‘Í

Microsoft PowerPoint - ‚æ4‘Í 第 4 章平衡状態 目的物質の平衡状態と自由エネルギーの関係を理解するとともに, 平衡状態図の基礎的な知識を習得する. 4.1 自由エネルギー 4.1.1 平衡状態 4.1.2 熱力学第 1 法則 4.1.3 熱力学第 2 法則 4.1.4 自由エネルギー 4.2 平衡状態と自由エネルギー 4.2.1 レバールール 4.2.2 平衡状態と自由エネルギー 4.3 平衡状態図 4.3.1 全率固溶型 4.3.2

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

12.熱力・バイオ14.pptx

12.熱力・バイオ14.pptx 本日の英単語 Thermodynamics 熱力学 Enthalpy エンタルピー Free energy 自由エネルギー Exothermic reaction 発熱反応 Endothermic 吸熱 Exergy エクセルギー 11. 地球システムの活動持続条件 火力発電所の場合 電力を生み出し続けるには 1 高温源 ( 低エントロピー ) Q 1 3 水 Q 2 2 廃熱 ( 高エントロピー

More information

1

1 問題を解こう. 熱力学の基礎 問題. 容積 [m ] の密閉容器内に 温度 0[ ] 質量 0[kg] の酸素が含まれている この容器内の圧力を求めよ ただし 酸素の気体定数を R= 59.8[J/kg K] とする 解答 酸素の体積 V=m 質量 m=0kg なので 酸素の比容積 v=/0 m /kg である 式 (.) において ガス定数 R=59.8 温度 T=(0+7)K であるので 圧力

More information

Charge and Spin Ordering in CuO

Charge and Spin Ordering in CuO 2017 年佐賀大学入試 物理熱力学問題 を解いてみよう 授業計画 1) 熱現象と熱力学 2) 状態量と状態方程式 3) 熱力学第 1 法則と内部エネルギー 4) 等温過程と断熱過程 5) カルノーサイクルと熱力学第 2 法則 6) 可逆効率とクラウジウスの不等式 8) 中間試験過程と不可逆過程 7) 熱機関の 9) エントロピーの定義 10) エントロピーの計算方法 11) 不可逆性とエントロピーの確率論的意味

More information

木村の理論化学小ネタ 液体と液体の混合物 ( 二成分系 ) の気液平衡 はじめに 純物質 A( 液体 ) と純物質 B( 液体 ) が存在し, 分子 A の間に働く力 分子 B の間に働く力 分子 A と分子 B の間に働く力 のとき, A

木村の理論化学小ネタ   液体と液体の混合物 ( 二成分系 ) の気液平衡 はじめに 純物質 A( 液体 ) と純物質 B( 液体 ) が存在し, 分子 A の間に働く力 分子 B の間に働く力 分子 A と分子 B の間に働く力 のとき, A との混合物 ( 二成分系 ) の気液平衡 はじめに 純物質 ( ) と純物質 ( ) が存在し, 分子 の間に働く力 分子 の間に働く力 分子 と分子 の間に働く力 のとき, と の混合物は任意の組成 ( モル分率 ) においてラウールの法則が成り立つ ラウールの法則 ある温度で純物質 が気液平衡状態にあるときの の蒸気圧 ( 飽和蒸気圧 ) を, 同温の を含む溶液が気液平衡状態にあるときの溶液中の

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

9‐3  半電池と標準電極電位

9‐3  半電池と標準電極電位 第 10 回目 008 年 6 月 3 日 ( 月 ) 更新 復習 7 16 膜平衡と浸透圧 生体膜 半透膜 ある物質を透過させ 他の物質を透過させない 物質輸送の選択性 受動輸送と能動輸送能動輸送と化学的自由エネルギー生体輸送非平衡系 平衡系を考える 浸透圧 (...) 復習 浸透圧とは 浸透圧とは 濃度を同じにしようとする水の流れ圧力である 濃度が違う液体は 濃度を同じにしようとする 半透膜があると

More information

June 11, 2007

June 11, 2007 6. 開いた系と化学ポテンシャル ここまでは粒子数は一定に保たれた系を考えたが 本章では粒子の出入りを考えて平衡を考える Jue 0 6- 化学ポテンシャル 粒子の出入りを考慮するために 化学ポテンシャルという概念を導入する 粒子数が変わる系の熱平衡 つの領域の間で粒子が行き来するとする (6.) 各領域の自由エネルギーを とおくと 全系の自由エネルギーは (6.) + = ( 一定 ) 図 6-

More information

2

2 知識ゼロからものづくりを学ぶ 機械設計エンジニアの基礎知識 熱力学の基礎を学ぶ 発行元 : 株式会社 RE page -1/38 Copyright2012. RAI.,Ltd. All right reserved. 2 目次 1. はじめに... 5 1-1. 熱力学とは... 5 1-2. 熱がエネルギーに変換される理由... 5 2. 熱力学で使われる温度の単位について... 7 2-1.

More information

Taro-ChemTherm06.jtd

Taro-ChemTherm06.jtd 第 6 章気体の性質 1. 理想気体 [ 気体の状態方程式 ] PV nrt (1) 化学総論 第 6 章気体の性質 25 [ 内部エネルギー ] ( ) 0 (2) [ 問 1](a) 熱力学の基礎方程式から, つぎの関係式があることを示せ du TdS - PdV (A) (b) 上式を, 温度一定条件下で, 体積 V で偏微分し, マックスウェルの式 S P ( ) ( ) (B) T V を利用すると,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

CERT化学2013前期_問題

CERT化学2013前期_問題 [1] から [6] のうち 5 問を選んで解答用紙に解答せよ. いずれも 20 点の配点である.5 問を超えて解答した場合, 正答していれば成績評価に加算する. 有効数字を適切に処理せよ. 断りのない限り大気圧は 1013 hpa とする. 0 C = 273 K,1 cal = 4.184 J,1 atm = 1013 hpa = 760 mmhg, 重力加速度は 9.806 m s 2, 気体

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

( 全体 ) 年 6 月 23 日,2016/10/23 戸田昭彦 ( 参考 9) 準静的過程と可逆過程 以下では, 全体の平衡状態が保たれながら行われることで無限にゆっくりと進む過程

( 全体 ) 年 6 月 23 日,2016/10/23 戸田昭彦 ( 参考 9) 準静的過程と可逆過程 以下では, 全体の平衡状態が保たれながら行われることで無限にゆっくりと進む過程 ( 全体 ) https://home.hioshima-u.ac.jp/atoda/hemodynamics/ 09 年 6 月 3 日,06/0/3 戸田昭彦 ( 参考 9) 準静的過程と可逆過程 以下では, 全体の平衡状態が保たれながら行われることで無限にゆっくりと進む過程 として定義される準静的過程 ( 準平衡過程 ) が可逆過程と同義となり, 仮想的な極限操作ではあるが具体的な可逆操作として構成可能であることを,

More information

木村の理論化学小ネタ 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関

木村の理論化学小ネタ   熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関 熱化学方程式と反応熱の分類発熱反応と吸熱反応化学反応は, 反応の前後の物質のエネルギーが異なるため, エネルギーの出入りを伴い, それが, 熱 光 電気などのエネルギーの形で現れる とくに, 化学変化と熱エネルギーの関係を扱う化学の一部門を熱化学という 発熱反応反応前の物質のエネルギー 大ネルギ熱エネルギーー小エ反応後の物質のエネルギー 吸熱反応 反応後の物質のエネルギー 大ネルギー熱エネルギー小エ反応前の物質のエネルギー

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく BET 法による表面積測定について 1. 理論編ここでは吸着等温線を利用した表面積の測定法 特に Brunauer,Emmett Teller による BET 吸着理論について述べる この方法での表面積測定は 気体を物質表面に吸着させた場合 表面を 1 層覆い尽くすのにどれほどの物質量が必要か を調べるものである 吸着させる気体分子が 1 個あたりに占める表面積をあらかじめ知っていれば これによって固体の表面積を求めることができる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Raction Enginring 講義時間 ( 場所 : 火曜 限 (8-A 木曜 限 (S-A 担当 : 山村 火 限 8-A 期末試験中間試験以降 /7( 木 まで持ち込みなし要電卓 /4( 木 質問受付日講義なし 授業アンケート (li campus の入力をお願いします 晶析 (crystallization ( 教科書 p. 濃度 溶解度曲線 C C s A 安定 液 ( 気

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 反応工学 Reactio Egieeig 講義時間 ( 場所 : 火曜 2 限 (8- 木曜 2 限 (S-2 担当 : 山村 高さ m Quiz: 反応器単価 Q. 炭素鋼で作られた左図のような反応器を発注する atm で運転するとして 製造コストはいくらか 反応器体積 7.9 m 3 直径 m a. $ 9,8 b. $ 98, c. $98, 8 円 /$, 29// ( 千 6 万円 出典

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

4. 発表内容研究の背景熱力学は物理学の基礎理論の一つであり その応用は熱機関や化学反応など多岐にわたっています 熱力学においてとりわけ重要なのは 第二法則です 熱力学第二法則とはエントロピー増大則に他ならず 断熱された系のエントロピーが減ることはない と表されます 熱力学第二法則は不可逆な変化に関

4. 発表内容研究の背景熱力学は物理学の基礎理論の一つであり その応用は熱機関や化学反応など多岐にわたっています 熱力学においてとりわけ重要なのは 第二法則です 熱力学第二法則とはエントロピー増大則に他ならず 断熱された系のエントロピーが減ることはない と表されます 熱力学第二法則は不可逆な変化に関 量子力学から熱力学第二法則を導出することに成功 時間の矢 の起源の解明へ大きな一歩 1. 発表者伊與田英輝 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 金子和哉 ( 東京大学大学院工学系研究科物理工学専攻博士課程 1 年生 ) 沙川貴大 ( 東京大学大学院工学系研究科物理工学専攻准教授 ) 2. 発表のポイント マクロな世界の基本法則である熱力学第二法則を カノニカル分布 ( 注 1) など統計力学

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

ii はじめに近代の臨床検査室では 血液を主とする体液の電解質濃度を測定するとき イオン選択電極法によることが多い 一般に普及している ph メーターは 溶液中の水素イオン濃度を測定するための装置であるが 水素イオンに特異的であるという点からいえば イオン選択電極法の装置の一つには違いがない また

ii はじめに近代の臨床検査室では 血液を主とする体液の電解質濃度を測定するとき イオン選択電極法によることが多い 一般に普及している ph メーターは 溶液中の水素イオン濃度を測定するための装置であるが 水素イオンに特異的であるという点からいえば イオン選択電極法の装置の一つには違いがない また i イオン選択電極 Ion Selective Electrode (ISE) を理解する ph を測定する Na や K などのイオン濃度を測定する 神戸大学医学部保健学科 非常勤講師中恵一 2003.6.16 (2015.5.25 J 版 ) ii はじめに近代の臨床検査室では 血液を主とする体液の電解質濃度を測定するとき イオン選択電極法によることが多い 一般に普及している ph メーターは

More information

MM1_02_ThermodynamicsAndPhaseDiagram

MM1_02_ThermodynamicsAndPhaseDiagram 2.4 2 成分系 3 回生 材料組織学 1 緒言 次に 2 成分系 ( 例えば元素 A と元素 B から成る A-B 二元系合金 ) の熱力学を取 り扱う 2.4.1 二元固溶体のギブス自由エネルギーいま 純金属 A と純金属 B が同じ結晶構造を持ち これらはどのような組成でも完全に混じり合って 同一の結晶構造の固溶体 (solid solution) を形成すると仮定する いま 1 モルの均一な

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 水素製造システム ( 第 7 回 ) 熱化学水素製造 松本 第 3 回 2 本日の講義の目的 水の熱分解 熱化学水素製造の考え方 エネルギー効率 実際の熱化学水素製造プロセス UT-3 IS 本スライドには以下の資料を参考にした : 吉田 エクセルギー工学 - 理論と実際 原子力辞典 ATOMICA http://www.rist.or.jp/atomica/index.html 再生可能エネルギーを利用した水素製造

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

高 1 化学冬期課題試験 1 月 11 日 ( 水 ) 実施 [1] 以下の問題に答えよ 1)200g 溶液中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 整数 ) 2)200g 溶媒中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 有効数字 2 桁 ) 3) 同じ

高 1 化学冬期課題試験 1 月 11 日 ( 水 ) 実施 [1] 以下の問題に答えよ 1)200g 溶液中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 整数 ) 2)200g 溶媒中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 有効数字 2 桁 ) 3) 同じ 高 1 化学冬期課題試験 1 月 11 日 ( 水 ) 実施 [1] 以下の問題に答えよ 1)200g 溶液中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 整数 ) 2)200g 溶媒中に溶質が20g 溶けている この溶液の質量 % はいくらか ( 有効数字 2 桁 ) 3) 同じ溶質の20% 溶液 100gと30% 溶液 200gを混ぜると質量 % はいくらになるか ( 有効数字

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

DVIOUT-熱力

DVIOUT-熱力 気体の分子運動 ( 改訂 1.0) 気体はいつも PV = nrt 気体分子の運動エネルギー E = 1 2 mv2 = 3RT 2N A 導けるようにすることが必要 1 枚の壁での力と圧力一辺の長さが l である立方体の容器の中で気体が運動していると する まず, 分子の速度を v = (v x, v y, v z ) とし,x 成分だけに注 目する 壁と気体分子とは弾性衝突とすると, 速度の壁に垂直な成

More information

Taro10-物理化学Ⅱ16.jtd

Taro10-物理化学Ⅱ16.jtd 物理化学 Ⅱ - 熱力学入門 - 2016 年度 講義ノート 琉球大学理学部海洋自然科学科堀内敬三 まえがき この小冊子は 琉球大学理学部海洋自然科学科化学系の 2 年生対象の講義 物理化学 Ⅱ の講義ノートである このノートに基づいて実際に黒板に板書する場合は ここに書いて あることを全て書くことは ( でき ) ないが それでもかなりの時間を板書に費やすことにな り また学生諸君もそれを書き写すのにかなりの時間を費やしてしまう

More information

Microsoft Word - SM-HO C0

Microsoft Word - SM-HO C0 統計力学講義ノート ( 年夏学期 ).4.8 by I. Kamiya 統計力学で何を学ぶか世の中の微視的な現象は確率 統計で決まっている ( 量子力学とはまた別の意味で ) これを合わせた形で集合体の性質は決まる これまで習ってきた古典力学 熱学等は集合体もしくは質点の性質のみ電子物性 複雑系の研究には必須熱力学の基礎的理解にも必須. 統計力学とは何か?. 基本概念アンサンブル エントロピー (

More information

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k 反応速度 触媒 速度定数 反応次数について. 化学反応の速さの表し方 速さとは単位時間あたりの変化の大きさである 大きさの値は 0 以上ですから, 速さは 0 以上の値をとる 化学反応の速さは単位時間あたりの物質のモル濃度変化の大きさで表すのが一般的 たとえば, a + bb c (, B, は物質, a, b, c は係数 ) という反応において,, B, それぞれの反応の速さを, B, とし,

More information

9 熱力学第 法則 状態関数 自 程 最大 事 0 じめに 熱力学, 第 法則 主役 演 大 エン 1 初学者 前 立 第 法則 断熱系 自 変化 進行, 必 エン 増 大 いう, いわ エン 増大 法則 表現 多い, 多 成書 表現 強調 い 感 あ 確, エン 第 法則 申 子 あ, 第 法則

9 熱力学第 法則 状態関数 自 程 最大 事 0 じめに 熱力学, 第 法則 主役 演 大 エン 1 初学者 前 立 第 法則 断熱系 自 変化 進行, 必 エン 増 大 いう, いわ エン 増大 法則 表現 多い, 多 成書 表現 強調 い 感 あ 確, エン 第 法則 申 子 あ, 第 法則 9. 熱力学第 法則 状態関数 自 程 最大 事 9 熱力学第 法則 状態関数 自 程 最大 事 0 じめに 熱力学, 第 法則 主役 演 大 エン 1 初学者 前 立 第 法則 断熱系 自 変化 進行, 必 エン 増 大 いう, いわ エン 増大 法則 表現 多い, 多 成書 表現 強調 い 感 あ 確, エン 第 法則 申 子 あ, 第 法則 真骨頂 自 変化 3 可逆 程 記述 あ, 自 変化

More information

平成27年度 前期日程 化学 解答例

平成27年度 前期日程 化学 解答例 受験番号 平成 27 年度前期日程 化学 ( その 1) 解答用紙 工学部 応用化学科 志願者は第 1 問 ~ 第 4 問を解答せよ 農学部 生物資源科学科, 森林科学科 志願者は第 1 問と第 2 問を解答せよ 第 1 問 [ 二酸化炭素が発生する反応の化学反応式 ] 点 NaHCO 3 + HCl NaCl + H 2 O + CO 2 CO 2 の物質量を x mol とすると, 気体の状態方程式より,

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

<4D F736F F F696E74202D2091E63189F D82CC899E977082C D8B408AED295F D758B F332E B8CDD8AB783828

<4D F736F F F696E74202D2091E63189F D82CC899E977082C D8B408AED295F D758B F332E B8CDD8AB783828 講義概要 エネルギー機器学 Ⅱ 国立大学法人筑波大学大学院システム情報工学研究科構造エネルギー工学専攻 阿部豊 科目番号 : FG79 科目名 : エネルギー機器学 Ⅱ 開講学期 : 秋学期 AB 曜日 : 水曜日 時限 : 時限 (:-6:0) 教室 : B406 担当教官 : 阿部豊 E-mail: abe@kz.tsukuba.ac.jp http://www.kz.tsukuba.ac.jp/~abe/

More information

3 大気の安定度 (1) 3.1 乾燥大気の安定度 大気中を空気塊が上昇すると 周囲の気圧が低下する このとき 空気塊は 高断熱膨張 (adiabatic expansion) するので 周りの空気に対して仕事をした分だ け熱エネルギーが減少し 空気塊の温度は低下する 逆に 空気塊が下降する 高と断

3 大気の安定度 (1) 3.1 乾燥大気の安定度 大気中を空気塊が上昇すると 周囲の気圧が低下する このとき 空気塊は 高断熱膨張 (adiabatic expansion) するので 周りの空気に対して仕事をした分だ け熱エネルギーが減少し 空気塊の温度は低下する 逆に 空気塊が下降する 高と断 3 大気の安定度 (1) 3.1 乾燥大気の安定度 大気中を空気塊が上昇すると 周囲の気圧が低下する このとき 空気塊は 高断熱膨張 (adiabatic exansion) するので 周りの空気に対して仕事をした分だ け熱エネルギーが減少し 空気塊の温度は低下する 逆に 空気塊が下降する 高と断熱圧縮 (adiabatic comression) されるので 温度は上昇する 飽和に達し 高ていない空気塊が断熱的に上昇するときの温度低下の割合を乾燥断熱減率

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63> 2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する

More information

<4D F736F F D C E89BB8EC08CB182685F8FF68B4388B32E646F6378>

<4D F736F F D C E89BB8EC08CB182685F8FF68B4388B32E646F6378> 応用化学実験 1 蒸気圧 注意本実験では水銀を用いた真空計 ( 水銀マノメータ ) を使用する 本真空計は, 細いガラス管の中を水銀柱が動いて圧力を表示する 水銀柱がガラス管の端に勢い良く衝突すると破損して, 部屋中に水銀が飛散し, 悲惨なことになる このようなことの無いよう, 内容をよく理解して作業を行い, 水銀マノメータのガラスコックは, 必ずゆっくりと慎重に開閉を行うこと もし破損した場合は,

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

法政大学情報メディア教育研究センター研究報告 Vol 年 69 完全液体と完全固体の相転移計算法 Phase Transition in Perfect Liquid and Perfect Solid 片岡洋右山田祐

法政大学情報メディア教育研究センター研究報告 Vol 年 69   完全液体と完全固体の相転移計算法 Phase Transition in Perfect Liquid and Perfect Solid 片岡洋右山田祐 法政大学情報メディア教育研究センター研究報告 Vol.6 年 69 http://hdl.handle.net/4/795 完全液体と完全固体の相転移計算法 Phase Transition in Perfect and Perfect 片岡洋右山田祐理 Yosuke Kataoka and Yuri Yamada 法政大学生命科学部環境応用化学科 Equations of state on perfect

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

Microsoft PowerPoint - システム創成学基礎2.ppt [互換モード]

Microsoft PowerPoint - システム創成学基礎2.ppt [互換モード] システム創成学基礎 - 観測と状態 - 古田一雄 システムの状態 個別の構成要素の状態の集合としてシステムの状態は記述できる 太陽系の状態 太陽の状態 s 0 = {x 0,y 0,z 0,u 0,v 0,w 0 } 水星の状態 s 1 = {x 1,y 1,z 1,u 1,v 1,w 1 } 金星の状態 s 2 = {x 2,y 2,z 2,u 2,v 2,w 2 } 太陽系の状態 S={s 0,s

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Microsoft PowerPoint - Inoue-statistics [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード] 誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

鉄 (Fe) の酸化に関するポテンシャル図 Keyword: ポテンシャル図計算 自由エネルギー表示 酸化反応 酸素分圧の計算 はじめに鉄 (Fe) は 酸化することにより酸化鉄と総称される 酸化数に応じて 酸化第一鉄 ( ウスタイト :FeO) 赤鉄鋼( ヘマタイト :Fe 2O 3) 磁鉄鉱(

鉄 (Fe) の酸化に関するポテンシャル図 Keyword: ポテンシャル図計算 自由エネルギー表示 酸化反応 酸素分圧の計算 はじめに鉄 (Fe) は 酸化することにより酸化鉄と総称される 酸化数に応じて 酸化第一鉄 ( ウスタイト :FeO) 赤鉄鋼( ヘマタイト :Fe 2O 3) 磁鉄鉱( 鉄 (Fe) の酸化に関するポテンシャル図 Keyword: ポテンシャル図計算 自由エネルギー表示 酸化反応 酸素分圧の計算 はじめに鉄 (Fe) は 酸化することにより酸化鉄と総称される 酸化数に応じて 酸化第一鉄 ( ウスタイト :FeO) 赤鉄鋼( ヘマタイト :Fe 2O ) 磁鉄鉱( マグネタイト :Fe O) と呼称されている ヘマタイトは 工業的用途の一つとしてベンガラという顔料に使用されている

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - siryo13

Microsoft PowerPoint - siryo13 4.. 光化学 - 大規模計算のための理論化学 - 7 年 7 月 6 日 無放射過程 : 内部転換と項間交差 化学反応 : 熱反応 & 光化学反応光化学反応 : 放射過程 & 無放射過程放射過程 : 蛍光 [A*(S ) A(S )+ν] りん光 [A*(T ) A(S )+ν] など無放射過程 : 内部転換 項間交差 前期解離など 内部転換 A*(S ) A(S ): 非断熱相互作用 ( 断熱近似で無視された振動状態と電子状態との相互作用

More information

数学 -1 以下の問に答えよ. ただし i = 1 である. 問 1 複素数 z = e iθ (0 θ 2π) のとき, 1 6cos θ+10 を z で表せ. 問 2 複素関数 f(z) = i 3z 2 +10z+3 を, 複素平面上の任意の単一閉曲線 C に沿って 積分せよ. 問 3 実積

数学 -1 以下の問に答えよ. ただし i = 1 である. 問 1 複素数 z = e iθ (0 θ 2π) のとき, 1 6cos θ+10 を z で表せ. 問 2 複素関数 f(z) = i 3z 2 +10z+3 を, 複素平面上の任意の単一閉曲線 C に沿って 積分せよ. 問 3 実積 数学 -1 以下の問に答えよ. ただし i = 1 である. 問 1 複素数 z = e iθ (0 θ 2π) のとき, 1 6cos θ+10 を z で表せ. 問 2 複素関数 f(z) = i 3z 2 +10z+3 を, 複素平面上の任意の単一閉曲線 C に沿って 積分せよ. 問 3 実積分 0 2π dθ 6cos θ+10 を求めよ. 数学 -2 以下の問に答えよ. 問 1 xy 正規直交座標系上で全微分可能な関数

More information

取扱説明書[d-01G]

取扱説明書[d-01G] d-01g 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 T 18 1 2 19 3 1 2 4 3 4 20 21 1 2 3 4 22 1 T 2 T 1 T 2 T 23 1 T 1 2 24 25 1 2 26 1 T 27 1 2 3 1 2 3 28 29 30 1 2 1 2 31 1 2 3 32 1 2 3 4 5 1 2 3 4 33 1

More information

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 つの質量は? 水素原子は,0.167 10-23 g 酸素原子は,2.656 10-23 g 炭素原子は,1.993 10-23 g 原子の質量は,

More information

湿度計算の計算式集 湿度計算を分かりやすく理解するために B210973JA-F

湿度計算の計算式集 湿度計算を分かりやすく理解するために B210973JA-F 湿度計算の計算式集 湿度計算を分かりやすく理解するために B210973JA-F 出版元 Vaisala Oyj Phone (int.): +358 9 8949 1 P.O. Box 26 Fax: +358 9 8949 2227 FI-00421 Helsinki Finland Visit our Internet pages at www.vaisala.com Vaisala 2013

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

木村の理論化学小ネタ   緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information