Size: px
Start display at page:

Download ""

Transcription

1

2

3 2002 7

4

5 i (mean time to failure) (mean time between failures)

6 iv %

7 v substandard standard FMEA (failure Mode and Effects Analysis) FTA (Failure Test Analysis)

8 vi A 145 A A A A

9 vii A A A

10

11 R(t), (t) a prior probability of failure m > M m < M

12 x 7.3 T substandard standard SC

13 xi

14

15 C C C C S

16

17 1 AGREE(Advisory Group on Reliability of Electronic Equipment) Symposium on physics of failure in electronics IEC(International Electrotechnical Commission)

18

19 (Initial Failure) (Wearout failures) (Chance failures)

20 : 1. 2.

21 Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered 2.2 X Y P(A) = X X +Y P(B) = Y X +Y (2.1) (2.2)

22 : P(A) 0 (2.3) : P(S) = 1 S (2.4) : P ( ) A n = P(A n ) (2.5) N n = 1, 2,, N N S A m A n 0 m n F(x) = P(X x) (2.6)

23 F( ) = 0 (2.7) F( ) = 1 (2.8) 0 F(x) 1 (2.9) x 1 < x 2 F(x 1 ) F(x 2 ) (2.10) P(x 1 < X x 2 ) = F(x 2 ) F(x 1 ) (2.11) F(x + ) = F(x) (2.12) (2.7)(2.8)(2.10)(2.12) N s N f N 0 N 0 N s + N f = N 0 (2.13) N s N 0 + N f N 0 = 1 (2.14) N s N 0 = A 1, N f N 0 = A 2 (2.15) (2.3)(2.4)(2.5)

24 8 2 R(t) N 0 N s (t) R(t) = N s(t) N 0 (2.16) N s (t) N 0 R(0) = 1 (2.17) R( ) = 0 (2.18) N f (t) Q(t) = N f (t) N 0 (2.19) (2.14) R(t), Q(t) R(t) + Q(t) = 1 (2.20)

25 q(t) = dq(t) [ dr(t) ] dt dt (2.21) t Q(t) = q(t)dt (2.22) 0 (2.22) (2.7) (2.12) (2.22)

26 10 2 (2.21) Q(t + dt) Q(t) q(t) = dt = N f (t + dt) N f (t) N 0 dt (2.23) (2.21) t Q(t) = q(t)dt (2.24) 0 (2.22) t R(t) = 1 = = 0 t 0 q(t)dt q(t)dt t q(t)dt q(t)dt (2.25) t N s t +dt N s (t +dt) N s (t) N s (t + dt) t

27 : R(t), (t) t + dt λ λ = N s(t) N s (t + dt) dt N s (t) = dn s(t) dt N s (t) = dn f (t) dt N s (t) (2.26) t λ = λ 0 (2.26) dn s (t)/(n s dt) = λ 0 d (lnn s ) = λ 0 dt lnn s = λ 0 t +C t = 0 N s (t) = N 0 lnn s = λ 0 t + lnn 0 then λ 0 = 1 ln t ( Ns N 0 ) = 1 ln R(t) (2.27) t

28 12 2 (2.26) N 0 (2.16)(2.19)(2.21) λ(t) = q(t) R(t) (2.28) (2.21) (2.28) λ(t)dt = dr(t) R(t) R(t) = exp [ ] λ(t)dt (2.29) (2.30) (2.30) R(t) = exp( λt) (2.31) (2.27) (2.30) λ (mean time to failure) MTTF t N f (t) dt N f (t + dt) N f (t + dt) N f (t) t t + dt dt N f (t + dt) N f (t) dt t t t + dt t [ Nf (t + dt) N f (t) ] t

29 N 0 1 N 0 [ Nf (t + dt) N f (t) ] t d(mt T F) = [ Nf (t + dt) N f (t) ] [ t = N f (t) + dn ] f (t) dt N f (t) t dt N 0 d(mt T F) = t dn f (t) dt = tq(t)dt N 0 dt MTTF (MT T F) = tq(t)dt (2.32) 0 (2.16) (MT T F) = 0 R(t)dt = 1 N s (t)dt (2.33) N 0 (2.30) H(t) 0 R(t) = exp[ H(t)] (2.34) t H(t) = λ(t)dt (2.35) 0

30 t N s (t) t T = tn s (t)dt (2.36) (mean time between failures) MTBF (MT BF) = N s (t)dt N s (t) N s (t + dt) (2.37)

31 t N s (t) dt [N s (t) N s (t + dt)] MTBF (2.26) MTBF λ (MT BF) = 1 λ (2.38) MTBF (2.28) (2.21) (MT BF) = 1 λ = R(t) q(t) q(t) = dr(t) dt R(t) (MT BF) = 1 [ t ] 1 q(t)dt q(t) 0 (2.39) λ MTTF MTBF (2.33) (2.30) λ (MT T F) = 0 exp( λt)dt = 1 = (MT BF) (2.40) λ (2.33)(2.40) (MT BF) = R(t)dt (2.41) 0 useful life (2.30) R(t) = exp( λt)

32 16 2 m (2.41) ( R(t) = exp t ) m (2.42) t = m R = m m λ (2.42) R(t) = 1 t m (2.43) Q(t) = t m (2.44) (t) (R) (Q) m/ m/ m/1, m/10, m/100, m/1, 000, m/10, 000, : < > ,000, ,000

33 :

34 18 2 < > 10, < > 1 3 n MTBF m 3 ( R(t) = 1 t ) n m = 1 n m t (2.45) Q(t) = n m t (2.46) n MTBF (2.46) Q(t) = n m t, Q (t) = n m t (2.47) Q(t) = n n Q (t) (2.48) < > (2.45) (2.48)

35 t = m/ t = m/ (2.45) (2.48) < > 1 MTBF m MTBF (2.47) m system = m/100 t = m/100, (2.47) Q(t) = 100 ( ) m = m 100, 000 t = m/100, t = m/100,000 Q(t) = 10 ( ) m = m 100, m system = m/10 n m m/n 2.5

36 20 2 m mean number of cycles between failure failure rate per one operating cycles ( R(c) = exp( λc) = exp c ) m (2.49) λ R(c) = 1 λc (2.50)

37 (2.20) (2.31) Q(t) = 1 exp( λt) (3.1)

38 22 3 q(t) = λ exp( λt) (3.2) λ t λ t λ t +t R(t) = exp( λ t )exp( λ t ) = exp [ (λ t + λ t ) ] (3.3) < > (3.3) tq(t) (2.32) MTTF 0 tq(t)dt = (MT T F) (3.4) (MTBF)=(MTTF) (2.40)

39 MTBF (2.41) m = R(t)dt = exp( λt)dt = 1 (3.5) 0 0 λ (3.4) ( m = tq(t)dt = t dr ) dt (3.6) 0 0 dt m = [tr(t)] 0 + R(t)dt 1 ( ) R(t) = exp λdt 0 lim tr(t) t = t lim t exp ( t 0 λdt) = 0 λ 0 λ 1/m q(t) = λ exp( λt) = 1 ( m exp t ) m ( Q(t) = 1 exp t ) m ( R(t) = exp t ) m (3.7) (3.8) (3.9)

40 24 3 λ 1, λ 2 MTBF m 1, m 2 R(t) = R 1 (t) R 2 (t) = exp[ (λ 1 + λ 2 )t] [ ( 1 = exp + 1 ) ] t m 1 m 2 (3.4) 2 2 t = t +t R(t) = exp [ λ(t +t ) ] (3.10) λ(t) = at (3.11) (2.20)(2.30) ) R(t) = exp ( at2 2 ) Q(t) = 1 exp ( at2 2 (3.12) (3.13)

41 MTBF m m q(t) = Aexp [ a(t m) 2] (3.14) MTBF MTBF (3.14) σ (3.14) q(t) = 1 ] [ σ 2π exp (t m)2 2σ 2 (2.21) Q(t) = 1 σ 2π t 0 = 1 1 σ 2π exp [ t (t m)2 2σ 2 exp [ ] dt (t m)2 2σ 2 (3.15) ] dt (3.16) 1 R(t) = 1 σ exp [ 2π t 3.3 (t m)2 2σ 2 ] dt (3.17) exp( x) exp(x) = 1 (3.18)

42 26 3 n k ( ) n f (k) = p k (1 p) n k (3.19) k p m = np (3.19) n(n 1) [n (k 1)] ( m ) k ( f (k) = 1 m ) n k k! n n ( = mk 1 1 )( 1 2 ) ( 1 k 1 )[ ( 1 m ) n/m] m ( 1 m ) k k! n n n n n (3.20) n ( 1 1 n = exp n) lim n (3.20) f (k) = mk exp( m) (3.21) k! k (3.21) ) exp( m) (1 + m + m2 2! + m3 3! + = 1 (3.22) (3.18) (3.22) (3.21) k m A (3.22) exp( m) mexp( m)

43 ( m 2 /2! ) exp( m) λ t R(t) = exp( λt) (3.23) t Q 1 (t) = (λt)exp( λt) (3.24) 2 Q 2 (t) = (λt)2 2! exp( λt) (3.25) Q(t) Q = Q 1 + Q 2 + Q 3 + = 1 R = 1 exp( λt) (3.26) 3.4 (Weibull) [ ( ) t γ m ] R(t) = exp η m η = t 1/m 0 (3.27)

44 28 3 γ µ σ γ = 0 ( σ 2 (t) = η [Γ m ( µ(t) = ηγ ) m )] ) Γ 2 ( m (3.28) (3.29) Γ (3.27) m = 1 (3.27) 2 1 lnln R(T ) = m lnt lnt 0 = m(lnt ln η) (3.30) y = lnln 1 R(t) (3.31) x = lnt (3.32) a = lnt 0 = mlnη (3.33) (3.30) y = mx + a (3.34)

45 (3.32) x (3.31) y y x m a = lnt 0 = mlnη m x = 1, y = 0 y = m(x 1) x = 0 y lnt = 1 lnln1/r = 0 lnt = 0 lnln1/rt ln(t 0 ) η (3.33) m, η (3.28)(3.29)

46 30 3

47

48 P(A), P(B) A, B P(A B) = P(A) P(B) (4.1) 2. A, B AB P(A B) = P(A) + P(B) P(A) P(B) (4.2)

49 P(A B) = P(A) + P(B) (4.3) 4. A, B P(A) + P(B) = 1 (4.4) A, B A, B A, B P(A), P(B) A, B A, B N s N 0 1 N s /N 0 R + Q = 1 (4.5) (4.4)

50 34 4 R 1 R 2 t (4.1) R S (t) = R 1 (t)r 2 (t) (4.6) (4.2) Q S (t) = Q 1 (t) + Q 2 (t) Q 1 (t)q 2 (t) (4.7) (4.5) Q S (t) = [1 R 1 (t)] + [1 R 2 (t)] [1 R 1 (t)][1 R 2 (t)] = 1 R 1 (t)r 2 (2) = 1 R S (t) (4.8) (4.2) R p (t) = R 1 (t) + R 2 (t) R 1 (t)r 2 (t) (4.9) (4.2) Q p (t) = Q 1 (t)q 2 (t) (4.5) Q p (t) = [1 R 1 (t)][1 R 2 (t)] = 1 R p (t) (4.10) 4.2 R S (t) + Q S (t) = 1 (4.11)

51 R S (t), Q S (t) R p (t) + Q p (t) = 1 (4.12) R p (t), Q p (t) R S (t) = exp[ (λ 1 + λ 2 )t] (4.13) Q S (t) = 1 exp[ (λ 1 + λ 2 )t] (4.14) R p (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.15) Q p (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.16) R S = R 1 R 2 R n (4.17) R i Q p = Q 1 Q 2 Q n (4.18)

52 36 4 < > λ t = λ d = λ r = λ c = : λ i = 4λ t + 10λ d + 20λ r + 10λ c = R S (t) = exp( t) 10 R S (10) = exp( ) = , m = 1/λ = 10,000 [ ] 10,000 10,000 e 1 = [%] 63 [%] 1) 1)

53 λ 1, λ 2 (4.15)(4.16) R p2 (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.19) Q p2 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.20) (3.5) m p2 = R p (t)dt = (4.21) 0 λ 1 λ 2 λ 1 + λ 2 λ 1, λ 2, λ 3 R p3 (t) = exp( λ 1 t) + exp( λ 2 t) + exp( λ 3 t) exp[ (λ 1 + λ 2 )t] exp[ (λ 2 + λ 3 )t] exp[ (λ 3 + λ 1 )t] + exp[ (λ 1 + λ 2 + λ 3 )t] (4.22) Q p3 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)][1 exp( λ 3 t)] (4.23) MTBF m p3 = 0 R p (t)dt = λ 1 λ 2 λ 3 λ 1 + λ 2 λ 2 + λ 3 λ 2 + λ 3 λ 3 + λ 1 1 (4.24) λ 1 + λ 2 + λ 3

54 R 1 = exp( λ 1 t), R 2 = exp( λ 2 t), R 3 = exp( λ 3 t) (4.25) Q 1 = 1 exp( λ 1 t), Q 2 = 1 exp( λ 2 t), Q 3 = 1 exp( λ 3 t) (4.26) (4.19)(4.20) R p2 + Q p2 = 1 = R 1 + R 2 R 1 R 2 + Q 1 Q 2 = R 1 (R 2 + Q 2 ) + R 2 (R 1 + Q 1 ) R 1 R 2 + Q 1 Q 2 = R 1 R 2 + R 1 Q 2 + R 2 Q 1 + Q 1 Q 2 = (R 1 + Q 1 )(R 2 + Q 2 ) (4.27) (4.22)(4.23) 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (4.28) n 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (R n + Q n ) (4.29) R p2 = 1 Q p2 = 1 [1 exp( λt)] 2 = 2 exp( λt) exp( 2λt) (4.30) Q p2 = Q 1 Q 2 = Q 2 = [1 exp( λt)] 2 (4.31)

55 m p2 = 1 λ 1 2λ = 3 2λ (4.32) R p3 = 1 Q p3 = 3exp( λt) 3exp( 2λt) + exp( 3λt) (4.33) Q p3 = Q 3 = [1 exp( λt)] 3 (4.34) MTBF m p3 = 3 λ + 3 2λ + 1 3λ = 29 6λ (4.35) n (4.29) (R + Q) n = R n + nr n 1 Q + n(n 1) R n 2 Q Q n = 1 (4.36) 2! (4.36) (R + Q) 3 = R 3 + 3R 2 Q + 3RQ 2 + Q 3 = 1 (4.37) Q 3 Q p = Q 3 (4.38) R p = R 3 + 3R 2 Q + 3RQ 2 (4.39)

56 40 4 < > Q p = 3RQ 2 + Q 3 (4.40) R p = R 3 + 3R 2 Q (4.41) λ = R = exp( 0.1) = Q = 1 R = = Q p = Q 3 = ( ) 3 = R p = 1 Q p = = m p = 3 λ + 3 2λ + 1 3λ = = < >

57 : λ i λ = λ i = R = exp( ) = R p = R 3 + 3R 2 Q = 3R 2 2R 3 =

58 : % n+1

59 ] exp( λt) [1 + λt + (λt)2 + (λt)3 + = 1 (4.42) 2! 3! exp( λt) exp( λt) (λt) 1 exp( λt)(λt) 2 /2! R 2 (t) = exp( λt) + exp( λt) (λt) (4.43) Q 2 (t) = 1 R(t) = exp( λt) (λt)2 2! + exp( λt) (λt)3 3! + (4.44) R 3 (t) = exp( λt) + exp( λt) (λt) + exp( λt) (λt)2 2! Q 3 (t) = 1 R(t) = exp( λt) (λt)3 3! + exp( λt) (λt)4 4! (4.45) (4.46) MTBF 2 m 2 = R 2 dt = 1 0 λ + λ λ 2 = 2 λ (4.47) 3 m 3 = 1 λ + 1 λ + 1 λ = 3 λ (4.48)

60 44 4 ] R n (t) = exp( λt) [1 + (λt) + (λt)2 + + (λt)n 1 (4.49) 2! (n 1)! [ ] (λt) n Q n (t) = exp( λt) + (λt)n+1 (4.50) n! (n + 1)! < > m n = n λ (4.51) λ = 0.01 R b = exp( λt) + exp( λt) (λt) = = R P = 1 ( ) 2 = (2.21) q = dr(t) dt (4.52) q(t) = λ exp( λt) (4.53) λ 1, λ 2 2 λ 1 λ 2 t 1

61 t 2 = t t 1 2 q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) (4.54) 2 q 2 (t 2 ) = λ 2 exp[ λ 2 (t t 1 )] (4.55) (2.21) dr = q(t)dt (4.54) dr 1 = q 1 (t 1 )dt 1 (4.55) dr 2 = q 2 (t 2 )dt 2 dr dr = dr 1 dr 2 = q 1 (t 1 )dt 1 q 2 (t 2 )dt 2 dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (dt dt 1 ) = q 1 (t 1 )q 2 (t t 1 )dt 1 dt q(t) = dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.56) dt t 1 2 t q(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.57) 0 q 1, q 2 q(t) 5 2

62 46 4 t q(t) = λ 1 λ 2 exp( λ 1 t 1 )exp[ λ 2 (t t 1 )]dt 1 = 0 λ 1 λ 2 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.58) MTBF (2.25)(2.41) R b (t) = m p = t q(t)dt = exp( λ 1 t) + λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.59) λ 2 λ 1 0 R b (t)dt = 1 λ λ 2 = m 1 + m 2 (4.60) (4.59)(4.60) λ 1 λ, λ 2 λ + x x (4.43)(4.47) q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) q 2 (t 2 ) = λ 2 exp( λ 2 t 2 ) (4.61) q 3 (t 3 ) = λ 3 exp( λ 3 t 3 ) t 2 = t t 1 0 t 1 t 2 (4.62) t 3 = t t 2 0 t 2 t 3 (4.63) q(t) = λ 1 λ 2 λ 3 t t 2 =0 t2 t 1 =0 exp( λ 1 t 1 )exp[ λ 2 (t 2 t 1 )]exp[ λ 2 (t t 2 )]dt 1 dt 2 (4.64)

63 (2.25) R b = λ 2 λ 3 exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) + λ 1λ 3 exp( λ 2 t) (λ 1 λ 2 )(λ 3 λ 2 ) + λ 1λ 2 exp( λ 3 t) (λ 1 λ 3 )(λ 2 λ 3 ) n (4.65) R b = λ 2 λ 3 λ n exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) (λ n λ 1 ) λ 1 λ 3 λ n exp( λ 2 t) + (λ 1 λ 2 )(λ 3 λ 2 ) (λ n λ 2 ) + λ 1 λ 2 λ n 1 exp( λ n t) + (λ 1 λ n )(λ 2 λ n ) (λ n 1 λ n ) (4.66) MTBF m p = 1 λ λ λ n (4.67) [%] 100 [%] R ss 1 R b (t) = exp( λt) + R ss exp( λt) λt (4.68) 2 R b (t) = exp( λ 1 t) + R ss λ 1 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.69)

64 48 4 λ 1 λ 2 λ 3 2 R b (t) = exp( λ 1 t) + λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.70) R b (t) = exp( λt) + R ss λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.71) < > λ 1 = λ 2 = R ss = : t = R b = exp( t) [exp( t) exp( 0.001t)] = = ,000 2 R = 1 [1 exp( t)] 2 =

65 MTBF m b = = 0 0 R b dt { } λ 1 exp( λ 1 t) + exp( λt) [exp( λ 1 t) exp( λ 2 t)] dt λ 2 λ 1 ( 1 λ 1 + λ 1 ) (4.72) λ 2 + λ = 1 λ 1 + λ 1 λ 2 λ 1 λ MTBF , λ = ln = MTBF N λ n N (n + 1) λ Nλ MTBF 1/(Nλ) n n MTBF 1/(Nλ) n + 1 (n +1)/Nλ

66 50 4 ( R S (t) = exp Nλ ) n + 1 t (4.73) < > 30 λ = R = exp( ) = (4.73) ( ) R = exp 10 =

67 A C B C A A B B A-A C-A C-B B-B 5.2 A B C A B 4

68 : 5.2: R = [1 (1 R A )(1 R B )(1 R C )][1 (1 R A )(1 R B )] P(A) = P(A B i )P(B i ) + P(A B j )P(B j ) (5.1)

69 P(system f ailure i f component X is good) P(X is good) + P(system f ailure i f component is bad) P(X is bad) (5.2) Q S R x X Q x (5.2) Q S = Q S (i f X is good) R x + Q S (i f X is bad) Q x (5.3) R S = 1 Q S (5.4) 5.1 X C Q S = Q S (i f C is good) R C + Q S (i f C is bad) Q C (5.5) C A, B A, B C Q S (i f C is good) = (1 R A )(1 R B ) (5.6) C A A, B B C Q S (i f C is bad) = (1 R A R A )(1 R B R B ) (5.7) Q S = (1 R A )(1 R B ) R C + (1 R A R A )(1 R B R B ) Q C (5.8)

70 : 5.2 (5.3) 5.3 R 1, R 2 1 X R 2 Q S = (1 R 1 ) R (1 R 2 ) (5.9) X 2 X X X 1 (1 R 2 ) R 1 + Q 1 (5.9) (1 R 1 ) R (1 R 2 ) = R 2 R 1 R R 2 = 1 R 1 R 2 (5.10)

71 : Q S = 0 R 2 + (1 R 1 )(1 R 2 ) (5.11) 0 R (5.11) R 1, R 2, R 3, R 4

72 :

73 Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.12) Q S (i f 1 is good) Q S (i f 1 is bad) 2 Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 (5.13) 1 (5.13) Q S (i f 1 is bad) = Q S (i f 2 is bad) Q 2 (5.14) 1 (5.13) Q S = Q S (i f 2 is bad) Q 2 Q 1 (5.15) Q S = Q 1 Q 2 Q 3 Q 4 (5.16) Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.17) 1 1

74 Q S = 1 R 1 R 2 R 3 R 1 R 2 R 4 R 1 R 3 R 4 R 2 R 3 R 4 + 3R 1 R 2 R 3 R 4 (5.20) main : 2005/4/26(22:28) 58 5 (5.17) Q S (i f 1 is good) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 )(1 R 4 ) R 2 + (1 R 3 R 4 ) Q 2 (5.18) Q S (i f 1 is bad) Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 R 4 )R Q 2 (5.19) (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 )(R 4 + Q 4 ) = 1

75

76 DFR(decreasing failure rate) 2. CFR(constant failure rate) 3. IFR(increasing failure rate) :

77 q(t ) = 1 ] [ σ 2π exp (T M)2 2σ 2 (6.1) M σ T M MTBF MTBF MTBF MTBF 6.2 MTBF MTBF 63 [%] 37 [%]

78 :

79 T t 6.2 a priori probability of failure t 1 t 2 T 1 T 2 P t2 t 1 = P T2 T 1 = t2 t 1 q(t)dt (6.2) T2 T 1 q(t )dt (6.3) t t Q(t) = q(t)dt (6.4) (6.1) [%] 2.14[%] T = 0 T = M 3σ [%] T = 0 T = M + 3σ [%] 2.14 [%] 2.14 [%] [%]

80 :

81 :

82 : a prior probability of failure

83 T 2 T 1 T 2 T 1 a prior probability of failure T = 0 T 1 T 1 F T2 T 1 = P T 2 T 1 R(T 1 ) = Q(T 2) Q(T 1 ) R(T 1 ) (6.5) T 1 T 2 a posterori probability of failure < > 2.14 [%] 2.14 [%] R T2 T 1 (t) = 1 F T2 T 1 (6.6) F M 3σ, M 2σ = / = R M 3σ, M 2σ = 1 F = F M+3σ, M+2σ = / = R M+3σ, M+2σ = 1 F = ϕ(t ) = σq(t ) (6.7)

84 68 6 (6.1) (6.1) (6.7) ϕ(t ) (6.1) r(t ) = ϕ(t ) R W (T ) (6.8) λ W (T ) = q(t ) R W (T ) = ϕ(t ) σr W (T ) = r(t ) σ (6.9) 6.6 z R W (T ) (6.9) (M<3σ) T = 0 q(t ) = 0 q(t ) = 1 ] [ σ 2π exp (logt M)2 2σ 2 (6.10)

85 :

86 70 6 M logt σ logt T = 0 T T Q(T ) = q(t )dt (6.11) 0 1 T 1 Q(T ) = 1 q(t )dt (6.12) R(T ) = T T q(t )dt (6.13) T W T W Q(t) (wearout failure) W < > T W = M 3σ T = T W = M 3σ

87 Q W = T W = M 4σ Q W = T W = M 5σ Q W = ,000 10,000 < > 1 T W = M 3σ 2 q w = T W = M 2σ Q W = T T T +t a prior probability of failure T +t λ exp( λt)dt = exp( λt) exp[ λ(t +t)] T exp( λt) [ λ(t +t)] F(t) = exp( λt) = 1 exp( λt) (6.14) T = 0 T = t

88 72 6 F(t) = Q(t) = 1 exp( λt) T t T T t t Q(t) = Q C (t) + F W (t) Q C (t)f W (t) (6.15) C W Q C (t) = 1 exp( λt) T F W (t) (6.5)(6.13) F W (t) = 1 σ T +t 2π T 1 σ 2π exp [ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.16) T t R W (t) = 1 F W (t) R(t) = exp( λt) exp( λt) F W (t) = exp( λt) R W (t) (6.17) (6.16) R W (t) = 1 σ 2π 1 σ 2π T +t exp[ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.18)

89 T T + t T +t, T t (6.1) (6.13) R W (t) = R W (T +t) R W (T ) (6.19) t (6.19) R(t) = exp( λt) R W (T +t) R W (T ) (6.20) < > R S (t) = exp( λ i t) R W i (T i +t) R Wi (T i ) (6.21) [R Wi (T i +t)/r Wi (T i )] T W t T Wi R W i (T i ) (6.22) R Wi (T Wi ) R Wi (T i ) R Wi (T Wi ) T Wi t T Wi (6.20) (2.28) λ C λ W

90 74 6 λ = λ C + λ W (6.23) (6.20) R(t) = exp( λ C t) R W (T +t) R W (T ) ( T +t ) = exp λdt T (6.24) 6.6 λ W = r/σ (6.24) λ = λ C +λ W T T +t T +t T λdt = T +t T = λ C t + (λ C + λ W )dt T +t T λ W dt t λ W = 1 2 [λ W T + λ W (T +t)] (2.28) λ W = 1 [ ] q(t ) q(t +t) + 2 R(T ) R(T +t) (6.25) T +t λ W dt = λ W t (6.26) T R(t) = exp[ (λ C + λ Wm )t] (6.27)

91 7 7.1 T = 0 (6.20) t = T R(T ) = exp( λt) R W (0 + T ) R W (0) = exp( λt)r W (T ) (7.1) 1 R W (0) = 1 (2.21) (6.1) R W (T ) = 1 σ 2π ] (T M)2 exp [ 2σ 2 dt (7.2)

92 76 7 T M exp( λt) R W (T ) m 7.1: m > M 7.2: m < M (7.1) T = 0 T 0 R(t) = exp( λt) R W (T 0 +t) R W (T 0 ) (7.3) 7.3 t = 0 (7.3) 1 (T =0) 7.1 M 9 4 T 0 = 0.4M 7.3

93 : T 0 t = T 2 M 3.5σ M 3σ (6.23) 7.4 n = 1000 m = 1,000,000, M = 10,000, σ = 2,000 1,

94 : m = m/1000 = 1000 [ ] 1,000 < > , : 5,400 [ ] 9,000 [ ] 9,970 [ ]

95 : 2 2M = 14,400 σ 2 = 2σ 1 = 1,200 10,000 [ ] M=21,600 λ r = 1/M = λ S = N λ r λ r wearout replacement rate T = nm (n = M/3σ 1 ) n = 7200/1800 = 4 T = 4M = 28, < >

96 : M 6σ 1 = 3,600 [ ] 10,000 [ ] 3,600 7,200 7,200 10, ,000 [ ] 10,000 [ ] [ ] ,200 [ ] 100,000 [ ] λ S = 1 (7.4) M i M i R S (t) = exp( λ S t) = exp ( 1 ) t M i (7.5)

97 R S (t) = n R W i (T i +t) R Wi (T i ) (7.6) n t (6.13) R Wi (t) = R W i (T i +t) R Wi (T i ) T = i +t q i(t)dt T i q i (t)dt q i i T i i T Wi T Wi = T i +t R S (t) = R W i (T Wi ) R Wi (T Wi t) (7.7) T W (7.7) R S (t) = R W i (T W ) R Wi (T W t) (7.8)

98 82 7 (7.7) (7.8) λ S = λ Ci + 1 M i (7.9) R S (t) = exp [ ) ] (λ Ci + 1Mi t (7.10) λ r = 1/M λ = λ C + λ r (7.10) R S (t) = exp [ (λ Ci + λ r ) i t ] (7.11) λ i (7.11)

99 8 8.1 substandard components MTBF

100 84 8 N N E substandard N E N substandard MTBF m e ( Q = 1 exp t ) (8.1) m e ( Q = 1 exp N ) Et m e (8.2) 100 [%] N ( R = exp N ) Et m e (8.3) substandard < > 10 m e = R = exp( 1) = [ ] R = exp( 10) = R = exp( 10 1 ) = R = exp( ) = N E MTBF m e N E m e N E 1 m e (4.67) ( E(t) = m e ) (8.4) N E

101 E(t) = 3m e = 30 [ ] substandard substandard standard : substandard standard T max T max 1

102 : N B N B /N N N E 1 (N B /N) ( N 2 = N E N E 1 N ) B N = N EN B N (8.5)

103 (8.5) ( N 2 = N E N E 1 N ) E N = N2 E N (8.6) N 2 N 3 = N E N N 2 = N3 E N 2 (8.7) 1 (N E /N) [%] λ g N G λ e N E λ g λ e λ S = N G λ g + N E λ e (8.8) N = N G + N E (8.9) N

104 88 8 λ S = Nλ g (8.10) (8.10) (8.8) λ S = Nλ g n n G (8.11) n G n n n n G = n E (8.12) (8.12) (8.11) ( λ S = Nλ g 1 + n ) E (8.13) n G n E /n G the incremental failure rate factor n G /n repair efficiency 8.3 N E N G λ e λ g

105 : N E λ e substandard N G λ g substandard N E = N E N E + N G N T [ λ = λ g + λ 0 exp T ] E(t) (8.14) (8.15) λ 0 = (λ e λ g ) N E N (8.16) E(t) (8.4) T = 0 λ i = λ g + λ 0 = λ gn G + λ e N E N (8.17)

106 90 8 λ = λ g (8.18) 1 [ T ] R(T ) = exp λdt = exp 0 { T = exp 0 [ λ g + λ 0 E(t)exp ( T [ λ g T λ 0 E(t) + λ 0 E(t)exp )] E(t) ( T E(t) } dt )] (8.19) 8.2 (8.15) λ W [ λ L = λ g + λ 0 exp T ] + λ W (8.20) E(t) λ W = q(t ) R(T ) = ] (T M)2 [ 2σ 2 exp ] T [ exp (T M)2 dt 2σ 2 (8.21) λ W = q(t ) R(T ) = q(t ) T q(t )dt (8.22) λ L = λ g + λ 0 exp [ T ] E(t) + + q(t ) T q(t )dt (8.23)

107 L(T ) T = 0 L(T ) = exp [ T ] λ L dt 0 L(T ) T (8.24) T T +t t [ T +t ] R(t, T ) = exp λ L dt T (8.25) T R(t) = exp( λ g t) (8.26) (8.24)(8.25) L(T ) = R C (T )R e (T )R W (T ) = exp( λ C T )exp [ T exp 0 R(t, T ) = R C (T )R e (T )R W (T ) = exp( λ C t)exp [ T +t exp T { λ 0 [1 exp( αt )] α ] q(t ) T q(t )dt dt { λ 0 α } } exp( αt )[1 exp( αt)] ] q(t ) T q(t )dt dt α = 1/E(t) (8.19) n (8.27) (8.28) R S (t) = R i (t, T i ) (8.29) (8.28)

108

109 9 9.1 (off-schedule maintenance) (schedule maintenance)

110 94 9 T p m t t m = t + t + m 1 m 2 = = n t i=1 m i n i=1 λ i t (9.1) T i H o = t m 1 T 1 + t m 2 T 2 + = = n T i i=1 n i=1 m i t (λ i T i )t (9.2) T i H o T o T p t

111 T m = T p + T o (9.3) T r system utilization factor U = t T p + T o + T r +t (9.4) maximum possible system utilization factor U = = t T p + T o +t t T m +t (9.5) (9.1) (9.2) 1) 3/2λ 2) 3/2λ 1/λ 1/2λ 1) 2) (4.32)

112 96 9 τ 1 e λτ m = 0 L(t)dt (9.6) L(t) 8 (8.27) (r + q) 3 = r 3 + 3r 2 q + 3rq 2 + q 3 (9.7) T n (9.7)

113 r 3 n 3r 2 qn 3rq 2 n q 3 n n N N = n(3r 2 q + 2 3rq q 3 ) = n(3r 2 q + 6rq 2 + 3q 3 ) (9.8) h 1 h total = Nh 1 (9.9) h 2 nh 2 h over all = Nh 1 + nh 2 (9.10) repair rate h over all /nt 9.2 maximum possible system utilization factor (9.5) m T m m T m = T m m t (9.11)

114 98 9 m, T m t, T m maximum possible system utilization factor U m system availability A A = m m + T m (9.12) m, T m t, T m maximum possible system utilization factor U m 100 [%] A + B = 1 complementary probability B B system unavailability T m B = m + T m (9.13) B 8760 [ ] T m T m (9.12) (9.13) A = 1 T m 8760 T m B = 8760 (9.14) (9.15) T m 9.3 system dependability D

115 off-schedule maintenance T o (9.12)(9.13) D = 1 T o 8760 (9.16) (9.2) t off-schedule maintenance T o (9.2) (9.2) H o t = n i=1 (λ i T i ) (9.17) off-schedule H o = T o r r = T o /t r = T o /t 0ff-schedule D = = = t T o +t T o /t r (9.18) D = (λ i T i ) (9.19)

116

117 FMEA (failure Mode and Effects Analysis)

118 102 10

119 10.1. FMEA (failure Mode and Effects Analysis) 103 (10.1) 10.4 C S = (C 1 C 2 C 3 C 4 C 5 ) 1/5 (10.1) C S C 1 C 2 C 3 C 4 C 5 C C C

120 : C : C 2

121 10.1. FMEA (failure Mode and Effects Analysis) : C 3 C S 7 C S < 10 4 C S < 7 2 C S < 4 C < : C S

122 FTA (Failure Test Analysis) (Fault Tree diagram)

123 10.2. FTA (Failure Test Analysis) Q A, Q B 1 (1 Q A )(1 Q B ) = Q A + Q B Q A Q B = Q A + Q B (10.2) (10.2) OR AND OR AND

124 :

125 10.2. FTA (Failure Test Analysis) : (X 1 + X 2 )(X 1 + X 3 ) = X 1 + X 1 X 3 + X 1 X 2 + X 2 X 3 = X 1 + X 1 X 2 + X 2 X 3 = X 1 + X 2 X 3 (10.3) 10.3: 10.4:

126 Z 8115

127

128

129

130 114 11

131 : 1) C A B C A 11.2: man 2. machine 1)

132 method

133 [%] SC

134 :

135 :

136 :

137 :

138 main : 2005/4/26(22:28) 122 第 11 章 品質保証体系 図 11.5: 信頼性試験試験結果

139 : (a) (b) (c) (d) (e) (f) (g) 2. (a) (b) (c) 3. (a) (b) (c)

140 : 2SC1815

141 SC1815 1

142 V CBO 60 [V ] V CEO 50 [V ] V EBO 5 [V ] I C 150 [ma] I B 50 [ma] P C 400 [mw] T j 125 [ ] T stg [ ] 12.1: N 1 N 1 N 2 N 0

143 N 0 + N 0 N 1 + N 0 N 1 N 2 + N 0 N 1 N2 2 [ + = N N1 (1 + N 2 + N2 2 + N2 3 ( ) + )] 1 = N N 1 1 N 2 = N N 1 N 2 1 N 2 (12.1) N 2 1 I = I s 1 + N 1 N 2 1 N 2 (12.2) : M M = 1 1 αdx (12.3)

144 M = V B n (V /V B ) n (12.4) [V /cm] Ψ 0 Ψ 0 = kt ( ) q ln NA N D n 2 i (12.5)

145 V (BR)CBO >V (BR)CEO >V (BR)CES >V (BR)CEX V B I CBO V (BR)CBO β µa β 12.2

146 : V (BR)CBO V (BR)CEO V (BR)CES V (BR)CER V (BR)CEX

147 T = R P (12.6) T R [ /W] P < > J.Fourie q x = ka x dt dx q x k [m /w] A x x (12.7) x (12.6) (12.7) (12.6)

148 : 12.4

149 : P R i R o T j T c T a R T = R i + R o (12.8) R T = R i + R o(r s + R c + R f ) R o + R s + R c + R f (12.9) R o R T = R i + R s + R c + R f (12.10)

150 : R s R c R f

151 [mv/deg] : 12.7 r t r t = t ( 1 R j + 1 t ) 1 r t (t +t 1 ) r t (t) + r t (t 1 ) t 0 t 12.8 R s + R c 12.2

152 : 12.8:

153 θ C + θ S [deg/w] TO ( µ) TO 66 ( µ) ( µ) TO H1A TO 220AB ( µ) TO TO 3P BIA ( µ) CIA ( µ) TO 3P(L) F1A ( µ) TO 3P(H) D2A ( µ) TO 3P(H) E2A 12.2: ( K = Aexp φ ) kt K (12.11)

154 : A φ k T a τ = a/k A = a/a (12.11) ( ) φ τ 1 = A exp (12.12) kt (12.12) ( ) ( ) φ φ τ 1 = A exp, τ 2 = A exp kt 1 kt 1 (12.13) lnτ 1 lna lnτ 2 lna = T 2 (12.14) T 1 [ ( φ 1 1 )] (12.15) k T 2 T 1 α = τ 2 τ 1 = exp

155 α [ev ] SiO Si SiO : ln(τ) = A + B α ln(s) (12.16) T A, B S 12.4

156 :

157

158

159

160

161 A A.1 1. (a) (b) 2. (a) (b)

162 146 A (c) (d) (e) (f) 3. (a) (b) (c) (d) X 1, X 2,, X n m = E(X 1 ) = E(X 2 ) = = E(X n ) (A.1) σ = σ(x 1 ) = σ(x 2 ) = σ(x n ) (A.2)

163 A E(aX + by ) = ae(x) + be(y ) (A.3) V (ax + by ) = a 2 V (X) + b 2 V (Y ) (A.4) X 1, X 2,, X n X = X 1 + X 2 + X n n (A.5) S 2 = [ (X 1 X) 2 + (X 2 X) 2 + (X n X) 2] (A.6)

164 148 A 7. (a) (b) 8. (a) (b) A.2 X 1, X 2,, X n (A.5) ( ) X1, X 2,, X n E( X) = E n = 1 n (X 1, X 2,, X n ) = m (A.7)

165 A ( ) X1, X 2,, X n V ( X) = V = 1 n n 2V(X 1, X 2,, X n ) = 1 n 2 (σ 2 + σ 2 + σ 2 ) = σ 2 2. ( ) X1, X 2,, X n V ( X) = V n = 1 n 2V(X 1, X 2,, X n ) n (A.8) = σ 2 n N n N 1 (A.9) E(S 2 ) = { 1 [ E (X1 X) 2 + (X 2 X) (X n X) 2]} n = 1 { n E [(X 1 m) X m)] 2 + [(X 2 m) X m)] [(X n m) X m)] 2} = 1 n E [ (X 1 m) 2 + (X 2 m) 2 + (X n m) 2] {[ ] } 1 E n (X 1 + X 2 + X n ) ( X m) + E [ ( X m) 2] = 1 n (σ 2 + σ 2 + σ 2 ) σ 2 n = n 1 n σ 2 (A.10) (n 1)/n 3. 1

166 150 A 1 m σ 2 n X n ( ) N m, σ 2 n 0 1 W N = Y N Y N = N i=1 (X i X i ) = 1 N σ Y N N i=1 σ X 2 NσX i X) i i=1(x W N Φ WN (ω) = E [exp( jωw N )] { [ ]} N jω = E exp NσX i X) i=1(x = [ { [ ]}] jω N E exp NσX (X i X) { [ ]} jω E exp = NσX (X i X) [ E 1 jω ( ) jω (Xi X) (X i X) R ] N = 1 ω2 NσX NσX 2 N 2N + E [R N] N ln[φ WN (ω)] = N ln [1 ω2 2N + E [R ] N] N ln[φ WN (ω)] = ω2 2 + E [R N] N [ ω 2 2 2N E [R ] 2 N] + N

167 A N 1 A.3 ) lim φ WN(ω) = exp ( ω2 N 2 (A.11), A.3.1,, X s 2, m σ 2 m = X = 1 n (x 1 + x x n ) (A.12) σ 2 = s 2 = 1 n 1 n i=1 (x i X) 2 (A.13) < > R.A.Fisher x 1, x 2,, x n n F = f (x 1 ) f (x 2 ) f )x n ) (A.14) x 1, x 2,, x n θ F theta theta theta F θ = 0 (A.15)

168 152 A, ln θ = 0 (A.16) A.3.2 θ Θ 1 Θ 2 γ Θ 1, Θ 2 P(Θ 1 θ Θ 2 ) = γ γ 0.90, 0.95, 0.99, 0.999,,,,, ( ) 2 X 1, X 2, X n m 1, m 2, m n σ 1, σ 2, σ n m = M 1 + m m n (A.17) σ = σ1 2 + σ σ 2 (A.18) 3 X 1, X 2, X n m σ X = 1 n (X 1 + X 2 + X n ) (A.19) m σ 2 /n

169 A X 1, X 2, X n m σ T = n X m Σ (A.20) n 1 t Y = (n 1) Σ2 σ 2 (A.21) n 1 Σ 2 = 1 n 1 n i=1 (X i X) 2 X = 1 n (X 1 + X 2 + X n ) 1. γ 2. γ c 3. X 4. k = cn/ n X k m X + k 1. γ 2. n 1 t, c F(c) = 1 (1 + γ) 2 3. X σ 2 4. k = cσ/ n X k m X + k 1. γ

170 154 A 2. n 1 t, c 1, c 2 F(c 1 ) = 1 2 (1 γ), F(c 2) = 1 (1 + γ) 2 3. σ 2,(n 1)σ 2 4. k 1 = (n 1)σ 2 /c 1, k 2 = (n 1)σ 2 /c 2 k 2 Σ 2 k 1 (A.11) P( Z < k) = P( X m σ n ) < k (A.22) (A.22) k = k 0 P P 0 1 P 0 (A.22) ( ) σ σ P X k 0 n < m < X + k 0 n = P 0 (A.23) σ X k 0 n σ < m < X +k 0 n P 0 (.A.10) P 0

171 A A.3.3 B(n, p) E(X) = np, V (X) = np(1 p) (A.24) Z = X np np(1 p) (A.25) P 0 Z < k 0 ) X np P( < k 0 = P 0 (A.26) np(1 p) p = X n (A.27) (A.26)(A.27) ( p(1 p) P p k 0 n ) p(1 p) < p < p + k 0 = P 0 (A.28) n p = p (A.28) ( ) p(1 p) p(1 p) P p k 0 < p < p + k 0 = P 0 (A.29) n n

172 156 A P 0 p k 0 < p < p+k 0 p(1 p) n p(1 p) n A.4 < > σ n X Z = X m σ n N(0, 1) 0.05 P( Z 1.96) = 0.05 X m 1.96 σ n

173 A < > (A.24. A.25)

174

175 IEEE VA QC VA QC VA QC VA QC

176

177 [1] Igor Basovsky Reliability Theory and Practice Prentice-Hall Inc. [2] [3] Peyton Z. Peebles, Jr. [4] Erwin Kreyszig

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5: BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

IA [email protected] Last updated: January,......................................................................................................................................................................................

More information

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information