kouhou_honbun_20_35_ pdf

Size: px
Start display at page:

Download "kouhou_honbun_20_35_201402.pdf"

Transcription

1 iz

2 iz

3 iz

4 iz iz iz

5

6

7

8

-

- - - v vt t y r y W0W9WwWq czx t - -4 u d d dr y r y x dx dd dd d d Wt Wq Wq f d x dt r o rd Wt XdXd Xd tx d Uu Xd Xd -5 v czx d t r o XdXd Xd -6 -7 o t t v vt t y y W0 W9WwWq -8 cc zx t d d y r Xd v iz

More information

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16 Lecture 11: PSRGs via Random Walks on Graphs October 22, 2013 Nii (NII) Lec. 11 October 22, 2013 1 / 16 expander graph [IZ89] Nii (NII) Lec. 11 October 22, 2013 2 / 16 Expander Graphs Expander Graph (

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R >

But nothing s unconditional, The Bravery R R >0 = (0, ) ( ) R >0 = (0, ) f, g R >0 f (0, R), R > 2 2 http://www.ozawa.phys.waseda.ac.jp/inde2.html But nothing s unconditional, The Bravery > (, ( > (, f, g > f (,, > sup f( ( M f(g( (i > g [, lim g( (ii g > (, ( g ( < ( > f(g( (i g < < f(g( g(

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

w4.pdf

w4.pdf ^ o M h i M o z w q p b q T z S 2 w q V w «: s T s r g r o M h i M o z Æ w 0 g r o M h i Z O t o S b { h z» Ø t m V o x z 7 s w p p ^ d o M h i M h Æ I X w q w 5 w A BtB B_B : A T t z m Z w M d o l h z

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

EOS Kiss X4 使用説明書

EOS Kiss X4 使用説明書 J J 2 3 6 V U 0 S 0 9 7 8 3 M M M 1 4 1 2 3 4 5 6 7 8 9 10 11 5 6 1 2 Q 3 1 1 7 2 3 4 5 6 C x 3 4 d Z D E S i j A s f a 8 q Oy A A A A B 2 7 8 5 6 7 8 A B f HI u y b X 9 10 11 K L B w W 9 i j s f D 7 A

More information

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0 Tips KENZOU 28 7 6 P no problem 2 w = f(z) z w w z w = (z z ) b b w = log (z z ) z = z 2π 2 z = z w = z /2 z = re iθ θ (z = ) 2π 4π 2 θ θ 2π 4π z r re iθ re i2π = r re i4π = r w r re iθ/2 re iπ = r re

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s . 00 3 9 [] sinh x = ex e x, cosh x = ex + e x ) sinh cosh 4 hyperbolic) hyperbola) = 3 cosh x cosh x) = e x + e x = cosh x ) . sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y =

More information

ual-ye 対応カメラリスト XIS XIS M3203 * * * XIS M3203-V * * * XIS M3204 * * * XIS M3204-V * * * XIS M5013 * XIS M5013-V * XIS M5014 * XIS M5014-V * XIS P1204

ual-ye 対応カメラリスト XIS XIS M3203 * * * XIS M3203-V * * * XIS M3204 * * * XIS M3204-V * * * XIS M5013 * XIS M5013-V * XIS M5014 * XIS M5014-V * XIS P1204 ual-ye 対応カメラリスト XIS XIS 207 * * * XIS 209F * * * XIS 211 * * * XIS 211W * * * XIS 212 PTZ * * XIS 212 PTZ-V * * XIS 214 PTZ * XIS 215 PTZ * XIS 215 PTZ- * XIS 216F * * XIS 216F-V * * XIS 216MF * XIS 216MF-V

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

ウイルスバスター ビジネスセキュリティ インストールガイド

ウイルスバスター ビジネスセキュリティ インストールガイド TM 2 3 6 Biz 10 Biz 36 46 51 9.0 Windows /PC/Mac 1 readme CD-ROM.htm CD-ROM PDF PDF Web http://tmqa.jp/dl49 TRENDMICRO TREND MICRO Trend Micro Smart Protection Network Smart Protection Network SPN 2 Copyriht

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

PRGR S.O 対応シャフト一覧 2019/2/1 現在 ドライバー / フェアウェイウッド用シャフト ALDILA シャフトモデル 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) ROGUE BLACK LIMITED EDITION

PRGR S.O 対応シャフト一覧 2019/2/1 現在 ドライバー / フェアウェイウッド用シャフト ALDILA シャフトモデル 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) ROGUE BLACK LIMITED EDITION ALDILA シャフトモデル 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) 硬さ 重量 (g) トルク ( ) ROGUE BLACK LIMITED EDITION - 60 70 - - - TS 63 3.6 TS 71 2.9 - - - TX 65 3.5 TX 72 2.8 - - - - - - - - - NV-JV 50 60 R 56 4.1 R 64

More information

TOUR B XD-3 1 (9.5,10.5 ) 装着ウェイトセンター :2g ヒール :8g 発行 : 取扱受注可能トルク調子 品番口径フレックス 長さ Tour AD TX2-6

TOUR B XD-3 1 (9.5,10.5 ) 装着ウェイトセンター :2g ヒール :8g 発行 : 取扱受注可能トルク調子 品番口径フレックス 長さ Tour AD TX2-6 カスタムスペックシート 2018 年 11 月 1 日改訂 NEW TOUR B X series P. 1-15 TOUR B JGR series TOUR B JGR LEFT HAND series TOUR B JGR LADY series P.16-28 P.29-37 P.38-41 表示価格は メーカー希望小売価格です メーカー希望小売価格は消費税率の改定 素材などの価格変動 その他の事情により予告なく変更する場合があります

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ダイオード中小型編 応用上の注意

ダイオード中小型編 応用上の注意 2-1 : 2. 2.1.1 2.1 1 1.5~2 AC1 V 2 V AC2 V 4 V AC1 V 4 V AC2~24 V 6~8 V 2.1.2 18 (Tj max) ( ) ( 2.1) ( 2.2) Ta max ( C) 16 14 12 1 8 6 4 2 18 Ta max I F (AV) カ ラス エホ キシ (t=1.6mm) 基板実装 1 2 基板サイス 5mm 5mm

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

ISTC 3

ISTC 3 B- I n t e r n a t i o n a l S t a n d a r s f o r Tu b e r c u l o s i s C a r (ÏS r c ) E d is i k e - 3 ) a =1 / < ' 3 I n t e r n a t i o n a l s t a n d a r d s f o r T B C a r e e «l i s i k e 3

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

18 18 19 3 1 1 1 7 1. 7 (1) 7 (2) 7 (3) 8 2. 8 3 9 (1)WTO 9 (2) 10 (3) 10 (4AFTA 13 4. 14 (1) 14 (2) 14 (3)IT 14 2005 2005 18 2 25 1. 25 (1) 25 25 26 26 (2) 28 (3) 28 2. 30 (1) 30 Amata 32 My Phuoc 34

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II 2 II

II 2 II II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

t OUI / RC -UI- 取付板 ブラケット - 概要 C U a.1... a I I m C.1.1 U Co ZZZZ 1.7. ZZZ h

t OUI / RC -UI- 取付板 ブラケット - 概要 C U a.1... a I I m C.1.1 U Co ZZZZ 1.7. ZZZ h OUI / RC -UI- 171 17 17 177 177 171 17 177 179 77 P.171 P.17 P.17 P.177 P.177 P.171 P.17 PCC PC U PCC PC U U C U C U C U C U 1 1mm 1mm 1 1 7 1 1 7.1mm.1mm 11.1mm 1mm 1 1mm 1 1mm.1mm.1mm.1mm 1.1mm.. 1..

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

DKA ( 1) 1 n i=1 α i c n 1 = 0 ( 1) 2 n i 1 <i 2 α i1 α i2 c n 2 = 0 ( 1) 3 n i 1 <i 2 <i 3 α i1 α i2 α i3 c n 3 = 0. ( 1) n 1 n i 1 <i 2 < <i

DKA ( 1) 1 n i=1 α i c n 1 = 0 ( 1) 2 n i 1 <i 2 α i1 α i2 c n 2 = 0 ( 1) 3 n i 1 <i 2 <i 3 α i1 α i2 α i3 c n 3 = 0. ( 1) n 1 n i 1 <i 2 < <i 149 11 DKA IEEE754 11.1 DKA n p(x) = a n x n + a n 1 x n 1 + + a 0 (11.1) p(x) = 0 (11.2) p n (x) q n (x) = x n + c n 1 x n 1 + + c 1 x + c 0 q n (x) = 0 (11.3) c i = a i a n (i = 0, 1,..., n 1) (11.3)

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

TEP 1

TEP 1 201 CUTOM CLUB GUIDE 201//19 TEP 1 TEP 2 FUBUKI V EIE F EIE BF EIE EIE W EIE B EIE KUO KAGE D EIE KUO KAGE M EIE 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 0 0 T T 0 0 0 0 T 0 T 0 0 0 0 0 0 0 0 0 T T T KUO KAGE

More information

RD2.0S~RD150S DS

RD2.0S~RD150S DS お客様各位 カタログ等資料中の旧社名の扱いについて 2010 年 4 月 1 日を以って NEC エレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し 両社の全ての事業が当社に承継されております 従いまして 本資料中には旧社名での表記が残っておりますが 当社の資料として有効ですので ご理解の程宜しくお願い申し上げます ルネサスエレクトロニクスホームページ (http://www.renesas.com)

More information

PTX_QRG_SL5R_T5R_JA_254024A.book

PTX_QRG_SL5R_T5R_JA_254024A.book クイックリフアレンスガイド SL5000 r および T5000 r RFID スマートラベルおよびサーマルプリンタ pë î ë m ¼x m û û Ò î êd î êdw óo 3ULQWURQL[,QF êd Þ Ã í è. î ØøØ» Š»pË 2. D 3ULQWURQL[,QF ðuêd ƒm ƒmè E êdêê F 3ULQWURQL[,QF êd þ óo Ãùè G êd

More information

04-04 第 57 回土木計画学研究発表会 講演集 vs

04-04 第 57 回土木計画学研究発表会 講演集 vs 04-04 vs. 1 2 1 980-8579 6-6-06 E-mail: [email protected] 2 980-8579 6-6-06 E-mail: [email protected] Fujita and Ogawa(1982) Fujita and Ogawa Key Words: agglomeration economy,

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

商学 65‐5☆/10.上田

商学 65‐5☆/10.上田 635 4 NEM 1990 M&A 1 2 M& A 2013 2014 1 6500 10 3 M&A UFJ Tax Haven 55 ICT FDI 636 UNCTADWorld Investment Report 2011 Non-Equity Modes of International Production and Development Foreign Direct Investment

More information

CKTB-3103 東芝スーパー高効率菜種油入変圧器 2014 スーパー高効率菜種油入変圧器 シリーズ

CKTB-3103 東芝スーパー高効率菜種油入変圧器 2014 スーパー高効率菜種油入変圧器 シリーズ CKTB-313 東芝 21 シリーズ 東芝 は 環境への配慮 地球温暖化防止を目 指して 菜種油を採用した地球にやさしい変 圧器です 省エネ法特定機器の使命である地球環境保護のための省エネはもとより 化石燃料を使用しない 環境 調 和性 環境調和性と安全性を追求しました CO の削減 (カーボンニュートラル) ² 土壌汚染の防止 (生分解性があり 毒性がない) 難燃性に優れている 安全性 長寿命化が期待できる

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, References: 3 mailto:[email protected] June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima, and H. Takayama, cond-mat/0204225. Typeset by FoilTEX

More information