Size: px
Start display at page:

Download ""

Transcription

1 Ver. 2b/ Update

2 ( ) CCD

3

4

5 1 1.1 ( ) F (=( )/( ) ) δ D δ = 116 D[mm] D = 100mm 1.2 ( 2 ) 5mm 7mm (BC150 ) 6 7mm M D[mm] M = log D = 100mm M = mm ( α) ( ) F6 F F8 5

6 1672 F 12 F3 F10 ( ) F12 1: (a) (b) (c) (d) (e) (f) ( ) ( ) ( F2 ) 2 F12 ED 2 3 F6 F8 6

7 λ/8 (λ 500nm) ( ) mm, 1330 mm 14 θ 20 ( 2/3) mm 159 mm mm 1070 mm cm F cm F m 15 m F2 λ/ ( 0.07 ) (F12.2) ( 2 F12.6) 30 ( ) 20 cm ( 22.8 t) m 2m

8 1: F F6 8 F6 8 F f o f e m m = f o /f e D[mm] D/2 2D F F (= f o /D) F/2 <f e [mm] < 2F 2D D/2 D/5 (AFOV: Apparent Field of View) (FOV: Field of view) ( )/( ) f o = 1000mm, f e = 20mm, AFOV = ( 3 ) ( ) ( 15 mm) 9 8

9 2.2 2 ( MH) 2 (K) (Er) (O) f e f e (80 ) 0.71f e ( ) : (1843 ) ( ) ( [mm]) ( ) 10 42, mm, = 60 9

10 2: (a) (b) (c) (d) (e) (f). ( 1989) 3.2 7, 8 ( ) ( ) = 60 ( ) ( ) mm 30 mm 40 mm =( )/( ). ( ) 7mm 7 10

11 5mm 7mm 2.5 mm 30 cm ( ) 10 mm 20 mm. AFOV = ( [ ]) ( ) kg 3.3 2:

12 (go-to mount) 3:. EM200 12

13 (1 ) 1 (go-to mount) 4.3 (a) ( ) ( ) ( ) W 2 5 W (b) 1( ) ( 4 ) (c) 2( )

14 3: (a) ( ) ( ) ( ) (b) ( ) ( ) ( ) (c) ( ) ( ) ( ) ( ) cm 1 20 cm

15 ( ) +1 (a) 1 f o θ θf o f o /100 4 F8 ASA100 1/60 (b) 1 (0.8 ) F ( ) (1.2 ) F ( ) f m s m d m B m B =(d s m )/f m (9.3 ) F m B s m f m m B f = m B f o F m B 15

16 6.2 ( ) f c m B = f c /f e (9.4 ) 6.3 CCD CCD CCD ( ) LRGB [ ] ( ) (10 ) [ ] CCD ( 2002) 6.4 Philips webcam ToUcam Pro RegiStax ( 2 ) ( ) CCD 6.5 d l = F d d =20µm F = mm 1 (4 ) CCD 16

17 6.6 4 (10 ) ( ) ( ) ( ) ( 1/5) 4: ( f o = 1000mm, F8, ASA400 ) 10 9mm 1/ mm 1/250 9mm 1/ mm 1/1000 ( ) mm 1/ mm 1/ mm 1/ mm 1/250 ASA32 F22 D4 ( 1 1) 6.7 ASA400 20µm ASA100 10µm 20µm ( ) 17

18 5: ( f o = 1000mm ) ( CCD) ( d ) 9.6 d A = F [mm] ( rad) 10 5 f o 10 5 f o d > F [mm]. d =0.02 mm f o 2000mm, D > 120mm, F < 17 7 ( ) 7.1 ( ) 50 % 7.2 ( ) ( ) 47. (28 ) 18

19 4 ( ) 0 ( ) ( ) ( ) ( ) 4: ( ) S: E: A: I: V E : V W : B: C: Q E : Q W : 2 1 ( 1610 ) 10 ( 1655 ) A B C A B (1684 ) (1781 )

20 (1) ( 8 ) (a) (b) ( ) (c) (2) (dwarf planet) (a) (b) ( ) (c) (d) (3) ( (trans-neptunian object ) ) small solar system bodies 2003UB313 (trans- Neptunian object TNO) (plutonian object) 7.3 (a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 13 ( ) α UMi W ( α) ( α) ( α) ( α) ( α) ( α) ( α) ( α) ( β) W(5 ) ( 5 ) 3 20

21 (1.5 ) (30 ) (30 ) ( 6 ) ( ) (b) NGC (New General Catalogue), IC (Index Catalogue) M57 HII ( ) ( ) ( ) M42 IC434 ( ) M31 ( ) h χ M13 ( ) (Hg Na 2 λ=556 nm 600 nm ) ( ) O III ( 500 nm ) ( 20 cm ) (c) ( ζ) ( 80g) ( ) ( γ) (4.4 ) ( α) (19.4 ) ( ɛ) (2.9 ) α (4.7 ) ( β) (34 ) ɛ 1, ɛ 2 ( 2.6, ) ( γ) (9.8 ) ( θ 1 ) (13 )4 10 ( β) 2.9 ( o)

22 (8 13 ) (11 18 ),, 7.4 (a) 5cm (b) (c) ( ) ( ) Hα (= 656 nm) 10 mm 20 mm ( ) 15 cm (a) ( α) (RA: right ascension) ( ) (360 = 24h) (DEC: declination) (2h35m49s, ) ( ) ( 3s/, 20 / )

23 BC : ( ) (11.3 ) ( 4.38 ) 2 α (0.3 ) ± ( 4.31 ) (b) 23

24 (18h00 m, 66.6 ) ( ) 4 6: Υ (c) ( ) (1950 : 12h49m, ) (1950 : 17h42m, ) (d)

25 8.2 7 (a) ( Ω) ( i) (b) ( a) (1 AU = km = 500 ) ( e) e =0 0 <e<1 e =1 e >1 ( ) 1 e a ( e 1) ( ω) (c) ( T ) P ( ) P =(a [AU]) 3/2 (1772 ) a n =(3 2 n 1 +4)/10 n =0( ) n = d 05h 48m 45s = d d 06h 09m 10s = d. 25

26 7: 20 29d 12h 44m 03s = d d 07h 43m 12s = d. 1/( ) = 1/( ) + 1/( ) 24h 00m 00s 1 23h 56m 04s = ( 1 ) 1 1 1/( ) = 1/( ) + 1/( )

27 ( ) ( ) h 40m 1 2h h 40m + (2 + 20/31) 2h 12h, 20 8h (UT: UniversalTime): ( ) =( ) 9 (JD: Julian Date): BC 4713( 4712) ( ) 12 JD 0.0 AD ( ) JD AD ( ) JD = ( ) ( ) (1873 )1 1 ( ) 8.4 (AU: AstronomicalUnit) =1AU= km (pc: parsec) ( ) 1 =1 pc = 3.26 (parallax) (second) 1 =1 = km ( ) ( ) n i n r θ i θ r sin θ i sin θ r = n r n i = n. (1) 8 n 1 27

28 sin 1 (1/n) 8: θ i : θ r : θ rfl : 9.2 a b f ( ) 1 a + 1 b = 1 f. 9 (i) (ii) (iii) 3 ( ) m (= h /h) m = b a = f a f = b f. (3) f a, b, f R (2) f = R 2 (> 0) (4) 28

29 9: (a) (b) f d k m m =(k + f d)/f. (5) f = 5 cm, k ( 25 cm), d = f m = P: Q: F: L: H: F : L : H : f=fh = H F. s =FL s =L F. H H 1 s s PH = a, H Q=b (2), (3) (i) (iii) (ii) 29

30 PL = a, L Q=b (a s)(b s )=f 2, m = f a s = b s f (6.1 ) f m d s m (6) (7) m B =(d s m )/f m (8) 10: f 1,f 2 2 l f s, s 1 f = l, (9) f 1 f 2 f 1 f 2 s =(1 l f 2 )f, s =(1 l f 1 )f. (10) 2 f = f 1 f 2 /(f 1 + f 2 ) f o,f e l d 30

31 k a b 11: h b = af o a f o, h = f o a f o h h h h 1 l b 1 k d = 1 f e l = b + f e(k d) a k d = f o + f e, (11) k d + f e a f o k d + f e h = k d + f e f e h = f o a f o k d + f e f e h (12) θ θ e θ = h a + l + d + t, θ e = h k = f o f e k d + f e k(a f o ) h. t ( ) m m = θ e θ = f o a + l + d + t f e a f o k d + f e k (13) 31

32 (11) t 0,d 0 a f o f e l f o m = f o f e a + f o a f o (1 + f e k ). (14) (a) a,k m = f o /f e. (15) f o = 1000mm, f e = 20mm m =50 (b) m = f o f e 1+(f o /a) 1 (f o /a). f o = 1000mm, f e = 20mm, a = 100m m = =51. (c) f g D= 1000/f g [mm] 5 f g =20cm 5 20 cm (15) fe 1 fe 1 + fg 1 f g (14) a, k = f g D m = f o ( 1 f e + D 1000 ). f o = 1000mm, f e =20mm 5 m = 1000( )=55 D=5 f g m = 1000( )=45 (d) (11), (12) f o f e,f e f c k =0 m B = h h = f e a f e f c d f c, l = af e a f e df c f c d. (16) 32

33 l a f e, d f c (16) f 2 e a f e f 2 c f c d. m B = f c /f e (17) l 9.5 p e a = f o + f e (3) p = m D = f e a f e D = D m m s e e = b (f e s e )=s e + f e /m s e. (19) m a = f o f e ( ) (1 1 m )f e h = D m = p d 2ω p e tan ω (D/m + p e ) = 2[(1 1/m)f e + d]. 2ω 2ω = 2ω m 1 D (m 1)f e + md m (1 + mp e D ) ( ) D = 26mm, f o =1.33m, m =14 p e = 5mm, d=0 2ω = (1 + )=0.0056rad = 19 (14 1) (18)

34 12: p e f o f e p e d AFOV 2ω = AFOV/m AFOV = 50,m= D δ λ {J 1 (πdδ/λ)/δ} 2 J 1 (x) 1 Dδ/λ 0.0, 0.82, 1.34, 1.85, ( ) ( ) (7.3 ) δ A λ 500 [nm] ( ) δ A =2.44λ/D /D[mm] = 250 /D[mm] 34

35 d A F F d A = F [mm] (20) 84 % 2 Dδ/λ ( ) δ D = 116 D[mm] 1 60 m 60 /m m 0.5D[mm] D 2D D = 125 mm (21) 9.7 h θ h sin θ θ sin θ θ 3 5 (1856 ) ( h 3 ) ( h 2 θ) (coma) φ/2 λ F F λ =0.1φ/F 2 ( CCD) 0.02 mm φ =0.2F 2 [mm] F = mm F =5 5mm ( hθ 2 ) 2 2 ( ) ( θ 3 ) ( ) ( hθ 2 ) 35

36 9.8 n R 90 = n 1 n (n =1.51) (22) R 90 = = R 45 = n 2 (n 2 1) 2 (n 2 + 2n 2 1) 3. (23) n =1.4 R 45 = n> 2=1.414 R 45 =1( ) n < 2 R 45 = (n 2 1) 2 (1 + n 2 n 2 ) 3. (24) (23) n 1/n 1/n n =1.4 R 45 = (a) n i 1 n i O R i P A, B, P H APO α, BPO β, POH γ α, β, γ sin θ tan θ θ ( ) (1) n i 1 α = n i β. HA=a i, HB=b i ( a i ) h i =PH h i = γr i =(γ β)b i =(γ α)a i. 36

37 13: α = γ(1 R i a i ), β = γ(1 R i b i ) n i = α n i 1 β = 1 (R i/a i ) 1 (R i /b i ). (25) a i b i 12 (b) d i a i+1 = b i d i (26) a i+1 b i+1 ( k ) a 1 n 0,,n k,r 1, R k 1,d 1, d k 1 a i (i =1,..., k), b i (i =1,..., k) 37

38 h i h i+1 h i = a i+1 b i f a 1 f =(h 1 /h k )b k b k k k f = b i / a i, (a 1 ). (27) i=1 i=2 f n k f = n 0 f (28) n 0 = n k =1 R 1,R 2, d f s, s s =(1+ 1 f =(n 1){ 1 1 (n 1)d + }, R 1 R 2 nr 1 R 2 (29) (n 1)d )f, s (n 1)d =(1 )f nr 2 nr 1 (30) R 1 > 0, R 2 < 0 38

39 10 6: ( 125 mm ) mm mm mm

40 7: 20 And 11 Lac 10 Ant 4 Leo ( ) 4 Aps ( ) 7 Lep ( ) 2 Aql ( ) 9 Lib ( ) 7 Aqr ( ) 10 LMi ( ) 4 Ara ( ) 8 Lup ( ) 7 Ari ( ) 12 Lyn ( ) 3 Aur ( ) 2 Lyr ( ) 8 Boo ( ) 6 Men ( ) 2 Cae ( ) 1 Mic ( ) 9 Cam 2 Mon ( ) 3 Cap ( ) 10 Mus ( ) 5 Car ( ) 3 Nor ( ) 7 Cas 12 Oct ( ) 10 Cen 6 Oph ( ) 8 Cep 10 Ori 2 Cet ( ) 12 Pav ( ) 9 Cha 4 Peg 10 Cir 6 Per 1 CMa ( ) 2 Phe ( ) 12 CMi ( ) 3 Pic ( ) 2 Cnc ( ) 3 PsA ( ) 10 Col ( ) 2 Psc ( ) 11 Com ( ) 5 Pup ( ) 3 CrA ( ) 8 Pyx ( ) 4 CrB ( ) 7 Ret 1 Crt 5 Scl ( ) 11 Cru ( ) 5 Sco 7 Crv ( ) 5 Sct ( ) 8 CVn ( ) 6 Ser ( ) ( / ) 7 /8 Cyg ( ) 9 Sex ( ) 4 Del ( ) 9 Sge ( ) 9 Dor ( ) 1 Sgr ( ) 9 Dra ( ) 8 Tau ( ) 1 Equ ( ) 10 Tel ( ) 9 Eri 1 TrA ( ) 7 For ( ) 12 Tri ( ) 12 Gem ( ) 3 Tuc ( ) 11 Gru ( ) 10 UMa ( ) 5 Her 8 UMi ( ) 7 Hor ( ) 1 Vel ( ) 4 Hya ( ) 4 Vir ( ) 6 Hyi ( ) 12 Vol ( ) 3 Ind 10 Vul ( ) 9 40

41 8: ( ) h m α Eri γ And 2.2d o Cet 3.0v α UMi ( ) β Per 2.1v α Tau β Ori α Aur 0.1d α Ori 0.5v α Car ( ) α CMa α Gem 1.6d α CMi β Gem α Leo γ Leo 1.9d β Leo α Cru 0.8d β Cru ζ UMa 2.1d α Vir ( ) 1.0d β Cen 0.6d α Boo α Cen -0.3d α Sco ( ) 1.0dv α Lyr ( ) β Cyg 2.9d α Aql ( ) α Cyg α PsA d v 41

42 9: (AU) ( ) =1AU( ) = km = : ( ) ( =1) ( ) ( ) ( ) (11 ) (60.2 ) h 56m h 37m h 55m h 39m h 14m h 07m ( 27.3 ) ( ) ( 29.5 ) ( ) = 6378 km. 42

43 ( 2001) W. Tirion, Sky Atlas, Deluxe Edition (Cambridge University Edition, 1989). 4. ( ) 5. ( ) 6. ( ) 7. Sky and Telescope (monthly) 8. ( ) 9. I II ( ) 10. ( ) 11. ( ) 12. ( 1978) ( ) 14. CCD ( 2002) 15. CCD ( ) 16. ( 1988) 17. ( 1989) 1. ( 2003) 2. The Sky ( 2003) 3. emapwin takesako/cal/emapwin eng.htm 1. NASA 2. Hubble 3. rt6k,okn/index2.htm LRGB 4. ToUcam 5. dd6t-sg/ web site 43

44 John Adams ( ), 19 Ernst Abbe ( ), 9 Giovanni Amici ( ), 9 George Airy ( ), 18, 34 Heinrich Erfle ( ), 9 Allan Kirkham (20 ), 6 S. Guillaume Cassegrain (1625? 1712), 6 Giovanni D. Cassini I ( ), 19 Galileo Galilei ( ), 5 Johann Galle ( ), 19 James Gregory ( ), 7 13 Gregory XIII ( ), 27 Henri Chrétien ( ), 6 Johannes Kepler ( ), 5 Carl Kellner ( ), 9 Philipp von Seidel ( ), 35 Christoph Scheiner ( ), 5 Bernhard Schmidt ( ), 6 Willebrord Snell ( ), 27 John Saris (? 1646), 7 CarlZeiss ( ), 9 William Dawes ( ), 5, 35 Horace Dall ( ), 6 John Dollond ( ), 7 Clyde Tombaugh ( ), 19 Albert Nagler (1935 ), 9 James Nasmyth ( ), 7 Isaac Newton ( ), 5 William Herschel ( ), 7, 19 Peter Barlow ( ), 15 J. Beyer ( ), 20 Giuseppe Piazzi ( ), 25 William Pickering ( ), 21 Hipparchus of Rhodes (BC190 BC120), 5, 20, 23 J.B. Leon Foucault ( ), 16 Claudius Ptolemy (AD85 AD165 ), 20 Joseph von Fraunhofer ( ), 34 James Bradley ( ), 23 Georg Plössl( ), 9 Friedrich Bessel( ), 23 Jean C.A. Peltier ( ), 16 Christiaan Huygens ( ), 9, 19 Johann Bode ( ), 25 Chester Hall ( ), 7 Ignazio Porro ( ), 9 Dmitrii Maksutov ( ), 6 Charles Messier ( ), 7, 21 George Ritchey ( ), 6 Hans Lippershey ( ), 7 Urbain Le Verrier ( ), 19 AFOV, 8 DEC, 22 FOV, 8 F F value, 5 Hα Hα line, 22 IC Index Catalogue, 21 LRGB Luminance-Red-Green-Blue, 16 NGC New GeneralCatalogue, 21 O III O III filter, 21 RA, 22 RegiStax, 16 ToUcam, 16 44

45 AU, 27 eye relief, 8, 33 achromat, 6 apochromat, 6 Amici prism, 9 image circle, 35 color correction, 6 Airy disk, 18, 34 satellite, 19 tele-extender, 15 Neptune, 19 diffraction ring, 34 resolving power, 5, 17 guidescope, 13 guided imaging, 17 Mars, 19 mount, 5 go-to mount, 12 fork mount, 12 angle of inclination, 25 semi-major axis of orbit, 25 orbitalelements, 25 retrograde motion, 19 polar axis, 13 polar scope, 12 virtualimage, 30 galactic latitude, 24 galactic coordinates, 24 galactic north pole, 24 galactic longitude, 24 paraxialrays, 36 paraxilrays, 28 Venus, 18 perihelion, 25 argument of perihelion, 25 quadrature, 19 law of refraction, 27 refractive index, 27 Gregolian calendar, 27 alt-az mount, 12 lunar eclipse, 18 penumbra eclipse, 18 umbra eclipse, 18 epoch, 25 conjunction, 19 superior conjunction, 19 inferior conjunction, 19 ecliptic latitude, 24 nebular filter, 21 ecliptic pole, 24 ecliptic longitude, 24 aperture, 5 aberration, 23 star, 20 siderealmonth, 26 siderealtime, 27 siderealday, 26 siderealyear, 25 period of revolution, 25 ecliptic, 24 ecliptic coordinates, 23 Zodiac, 20 light-year, 27 sunspot, 22 collimation method, 15, 16, 32 composit, 16 precession, 22 greatest elongation, 18 synodic month, 26 sagittalplane, 35 seeing, 21 hour angle of sidereal time, 13 meridian, 27 apparent diameter, 15 realfield of view, FOV, 8 45

46 realimage, 31 exit pupil, eyepoint, 8, 33 aberration, 35 chromatic aberration, false color, 35 sphericalaberration, 35 coma, 35 astigmatism, 35 distortion, 35 field curvature, 35 prime focus method, 15 principalpoint, 29 progressive motion, 19 vernalequinox, 22 opposition, 19 ascending node, 25 ecliptic longitude of, 25 focus, 28 focallength, 5, 29 asteroid, 22, 25 Mercury, 18 comet, 22 Snell s law, 27 nebula, 21 dark nebula, 21 extragalactic nebula, galaxy, 21 defuse nebular, 21 planetary nebula, 21 constellation, 20 star cluster, 21 globular cluster, 21 open cluster, 21 universaltime, 27 declination, DEC, 22 right ascension, RA, 22 equatorialmount, 12 equatorialcoordinates, 22 eyepiece, 8 Erfle type, 9 orthoscopic, 9 Kellner type, 9 Nagler type, 9 Plössltype, 9 Huygens type, 9 totalreflection, 28 binocular, 9 roof prism type, 9 Porro prism type, 9 atmospheric refraction, 17 Sun, 22 solar day, 26 solar year, 25 super nova, 22 diopter, 32 celestial sphere, 22 zenith, 17 diagonalprism, 9 diagonalmirror, 9 Uranus, 19 celestial equator, 22 north celestial pole, 22 astronomicalunit, 27 magnitude, 5 limiting magnitude, 5 Saturn, 19 drift method, 13 knife-edge method, 16 Nasmyth focus, 7 transit, 27 double star, 21 transit, 19 solar eclipse, 22 annual parallax, 23, 27 parsec, 23, 27 Barlow lens, 15 46

47 magnification, 10, 30 angular magnification, 31 image magnification, 28 Barlow magnification, 16 telescopic power, 8 magnifier power, 29 transverse magnification, 28 Moon s path, 24 back-focus, 15, 29 wave optics, 34 reflective index, 36, 8,33 diameter of exit pupil, 10, 33 prominence, 22 resolution, 5, 10, 34 Peltier cooling, 16 variable star, 21 telescope, 5 telescopic power, 8 Cassegrain reflector, 6 catadioptoric, 5 Galilean refractor, 5 refractor, 5 Keplerian refractor, 5 Schmidt-Cassegrain type, 6 Schmidt type, 6 Dall-Kirkham type, 6 Newtonian reflector, 5 reflector, 5 Maksutov type, 6 Ritchey-Chrétien type, 6 Bode s law, 25 Moon glass, 18 Pluto, 19 Messier catalogue, 21 meridionalplane, 35 motor drive, 12 Jupiter, 19 Julian century, 27 Julian date, 27 Julian calendar, 27 eccentricity, 25 stationary, 19 facula grains, 22 meteor, 22 focalreducer, tele-compressor, 15 lens, 28 eyepiece, 8 object lens, 5 meniscus lens, 6 binary star, 21 exposure time, 17 planet, 18 planetary nebula, 21 superior planet, 19 inferior planet, 18 apparent field of view, AFOV, 8, 11 47

C03-044 2008 2 29 1 4 1.1.......................................... 4 1.2...................................... 4 1.3.......................................... 4 2 6 2.1......................................

More information

2 1

2 1 1 ( ) (NPO ) 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 100kpc( ) 10 1: ( ) ( ) / α Eri 0.46 B3 V 145 0.10 α Tau 0.85 K5 III 64 0.20 β Ori 0.12 B8 Ia 800 0.00 α Aur 0.08d G8 III 42 0.43 α Ori 0.50v M1-2 Ia-Iab 450

More information

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998 18 1 12 2016 キトラ古墳天文図の観測年代と観測地の推定 2015 5 15 2015 10 7 Estimating the Year and Place of Observations for the Celestial Map in the Kitora Tumulus Mitsuru SÔMA Abstract Kitora Tumulus, located in Asuka, Nara

More information

M4 III ィー02ィーィ 04ィ ィヲ09ィコ06ィヲ 03ィーィィ B9 ィヲ06ィーィ 04ィ ィヲ09ィコ06ィヲ 03ィーィィ B3 IV ィコィ 0707

M4 III ィー02ィーィ 04ィ ィヲ09ィコ06ィヲ 03ィーィィ B9 ィヲ06ィーィ 04ィ ィヲ09ィコ06ィヲ 03ィーィィ B3 IV ィコィ 0707 1303040609020403010603 2. 0809ィー0806050600ィィ ツ0209ィコィィ 09ィ 03ィェ0402 040900040104 030807ィャ0602 05ィコ0506-0509. 050702ィコィー08ィ 05. 09060901060301. ィェ02ィェィィ02 090205. ィコ05ィ 0909 01ィ ィィィャ02ィェ0609ィ ィェィィ02 040902040104

More information

スライド タイトルなし

スライド タイトルなし No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ADS (.0) 671 1615 1860 5423 6175 7724 8119 8630 9413 10157 10417 11005 11046 11635 11635 12880 14636 15270 15971 Cas Psc Cas CMa Gem Leo UMa Vir Boo Her

More information

2. The Two-body Problem 1 2 The Two-body Problem 2.1 Introduction 2, 2.2,,.,,2, Newton, Principia(1687) 2.1, 1.,., 2,. 2.2 Equations of Motion 2

2. The Two-body Problem 1 2 The Two-body Problem 2.1 Introduction 2, 2.2,,.,,2, Newton, Principia(1687) 2.1, 1.,., 2,. 2.2 Equations of Motion 2 2 The Two-body Problem 1 2 The Two-body Problem 21 Introduction 2 2 2 2 3 2 Newton Principia(1687) 2 1 1 2 22 Equations of Motion 2 m 1 m 2 2 r 1 r 2 m 1 m 2 r = r 2 r 1 ( 21) 2 F 1 = +g m 1m 2 r 3 r =

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 4 The discovery power of modern astronomoical instruments 5 Instrumentation and dete

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   4 The discovery power of modern astronomoical instruments  5 Instrumentation and dete ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 4 The discovery power of modern astronomoical instruments 5 Instrumentation and detectors 4 2017/4/19 Contents 4.3 Polarization; transverse

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

Microsoft PowerPoint _nakagawa_kagoshima.ppt [互換モード]

Microsoft PowerPoint _nakagawa_kagoshima.ppt [互換モード] Mira 型変光星プロジェクト現状とKVN の利用 A.Nakagawa, T.Kurayama (Kagoshima University) Mira Project Observation Current Status KVN + VERA 大マゼラン雲 (LMC) のミラ型変光星周期光度関係 実視等級を元に得られた関係 距離に対してLMCの厚みは小さくすべて同じ距離にあるとみなせるため実視等級を利用できる

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C

214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C AY Lyr ASASSN-14jv CCD I11G22 214 1 11 SU UMa AY Lyr AY ASASSN-14jv CCD ASASSN-14jv SU UMa WZ Sge 28 29 AY Lyr O-C 1 4 1.1............................. 4 1.2................................ 5 2 7 3 9 4

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

Ando_JournalClub_160708

Ando_JournalClub_160708 Independent discoveries of a tidally disrupting dwarf galaxy around NGC 253! A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253 Toloba, E. et al. 2016, ApJL, 816, L5 (hereafter T16, accepted 2015.12.07)

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

untitled

untitled 50cm 2500mm 300mm 15 CCD 15 100 1 2 3 4 23 SORA Kwak SeungJo 1 1.1 1995 20 2015 6 18 1931 1 2 3 2 ˆ 300mm 2500mm ˆ 2 1.2 WASP 1: 15 2048 2048 CCD 200mm 70 13 WASP 8 1.3 50cm 1 1: CCD 2: 1.4 MOST MOST 15

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

revise-01.dvi

revise-01.dvi 14???? (2011) 247 3 24 ( ) ( ) (2011 5 20 ; 2011 8 15 ) We examine the value of ΔT at around AD 247. We found that there is a comment in the Jinshu ( ) on the eclipse on March 24, 247 (Julian Calendar).

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

C10-075 26 2 12 1 1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

DVIOUT-MTT元原

DVIOUT-MTT元原 TI-92 -MTT-Mathematics Thinking with Technology MTT ACTIVITY Discussion 1 1 1.1 v t h h = vt 1 2 gt2 (1.1) xy (5, 0) 20m/s [1] Mode Graph Parametric [2] Y= [3] Window [4] Graph 1.1: Discussion 2 Window

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3) [ ] KENZOU 6 3 4 Origin 6//5) 3 a a f() = b n ( a) n c n + ( a) n n= n= = b + b ( a) + b ( a) + + c a + c ( a) + b n = f() πi ( a) n+ d, c n = f() d πi ( a) n+ () b n c n d n d n = f() d (n =, ±, ±, )

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

OC αumi - JR s Deep Sky Atlas No. B-1 or C-1 古い散開星団として有名 2 等星に近く入れやすい 北極星の周りにリングを見るアステリズム がある

OC αumi - JR s Deep Sky Atlas No. B-1 or C-1 古い散開星団として有名 2 等星に近く入れやすい 北極星の周りにリングを見るアステリズム がある Herschel400 導入星図試作品 落穂その1 同じ様式でその他の天体を補ったもの 市街地で見やすく 眼視のハーシェルが見落としやすい 小さい惑星状星雲をかなり足したが まだまだある 散光星雲は写真やフィルタの発達で対象天体が増えたが 市街地では見にくいので今回はあまり足していない 南天の星は当然追加になる 星図は滝星図 8.5 を使用し 視野 1 度の円と明るい星からの導入路を補った http://www.geocities.jp/toshimi_taki/index.htm

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

ISLE 2010/08/17

ISLE 2010/08/17 ISLE 2010/08/17 Talk plan 1. ISLE 2. 3. 4. 2011A 2010/8/17 OAOUM 2010 ISLE 2010/8/17 OAOUM 2010 ISLE OASIS HAWAII (HgCdTe 1024 1024) 4.2 4.2 arcmin 2, 0.25 arcsec/pix (13 Filters) 2006B FWHM = 0.75 arcsec

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

) Euclid Eukleides : EÎkleÐdhc) : 300 ) StoiqeÐwsic) p.4647) ΑΒΓ ΒΑΓ ΓΑ Β ΒΓ ΑΓ ΓΑ Α G G G G G G G G G G G G G G G G ΑΒΓ ΒΑΓ = θ ΒΓ = a ΑΓ = b = c Α =

) Euclid Eukleides : EÎkleÐdhc) : 300 ) StoiqeÐwsic) p.4647) ΑΒΓ ΒΑΓ ΓΑ Β ΒΓ ΑΓ ΓΑ Α G G G G G G G G G G G G G G G G ΑΒΓ ΒΑΓ = θ ΒΓ = a ΑΓ = b = c Α = 0 sin cos tan 3 θ θ y P c a r sin θ = a c = y r θ b C O θ x cos θ = b c = x r tan θ = a b = y x ristarchus >rðstarqoc) : 30? 30?) PerÐ megejÿn kai aposthmĺtwn HlÐou kai Selănhc : On the Sizes and istances

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

untitled

untitled PGF 17 6 1 11 1 12 1 2 21 2 22 2 23 3 1 3 1 3 2 3 3 3 4 3 5 4 6 4 2 4 1 4 2 4 3 4 4 4 5 5 3 5 1 5 2 5 5 5 5 4 5 1 5 2 5 3 6 5 6 1 6 2 6 6 6 24 7 1 7 1 7 2 7 3 7 4 8 2 8 1 8 2 8 3 9 4 9 5 9 6 9 3 9 1 9

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information