(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian
|
|
|
- かつかげ ちづ
- 7 years ago
- Views:
Transcription
1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di- Nardo(1997) Woolridge(2000a) Handbook of Econometrics (North-Holland) Chamberlain (1984) Arellano and Honoré (2001) Gauss, Carl Friedrich (Airy, George Biddell) (Poincaré, Henri)
2 (p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian Marie: ) 1805) R.A. 1
3 (erro components model) heterogeneous y it = α + X itβ + u it i = 1,...N; t = 1,...T (1) i two-way error component 5 u it = µ i + λ t + ν it (2) µ i λ t ν it λ t = 0 (2) (one-way error component) u it = µ i + ν it (3) 5 n
4 (1) OLS (pooling estimation) one-way fixed effect estimation (Least Squares Dummy Variable Model ; LSDV) (one-way random effect estimation) y it θy i X it θx i (Generalized Least Squares; GLS) θ Baltagi(2001) Hsiao(2002)
5 (self selectivity) (non-response) (attrition) Panel Study of Income Dynamics (PSID) National Longitudinal Surveys of Labor Market Experience (NLS) 5 ( ) (5020 ) ( ) ( ) ( ) (5159 ) ( ) NLSY NLSY (Statistics Canada) The Canadian Survey of Labor Income Dynamics (SLID) The German Social Economic Panel The Belgian Socioeconomic Panel The French Household Panel
6 The Hungarian Household Panel ( ) The British Household Panel Survey (BHPS) The Dutch Socio-Economic Panel (ISEP) The Russian Longitudinal Monitoring Survey (RLMS) The Swiss Household Panel (SHP) The Luxembourg Panel Socio-Economique Liewen zu L zebuerg (PSELL) EuroStat 1994 The European Community Household Panel (ECHP) ECHP 1.3 Bayes, Thomas (Savage, Leonard J) 6 Bayes theorem A H 1, H 2,... H k A H i P (H i A) P (A H i ) P (H i A) H 1, H 2,... H k H i H 2... H k = Ω P (H i A) = P (H i ) P (A H i ) sum{p (H j ) P (A H j )} P (H i ) H i prior probability P (H i A) posterior probability
7 (Zellner, Arnold) (Ordinary Least Squares; OLS) Y 1, Y 2... Y n µ Y var(y ) = σ 2 Y Y i = µ Y + ε i E(ε i ) = 0, var(ε i ) = σ 2 Y E(Y i ) = µ Y e i = Y i µ Y i = 1,..., n µ Y min n e 2 i = min n (y i µ Y ) 2 i=1 (sum of squared errors, SSE) µ Y SSE µ Y = d n (y i µ Y ) 2 i=1 i=1 = 2 n (Y i ˆµ Y ) = 0 dµ Y i=1 n Y i = nˆµ Y ˆµ Y = i=1 n Y i i=1 ˆµ Y (Best Linear Unbiased Estimator; BLUE) Gauss-Markov s theorem n 7 Koop(2003) Lancaster(2004)
8 y = β 0 + β 1 x + u (4) x u Cov(x, u) 0 (5) β 0 β 1 x x u z Cov(z, u) = 0 (6) Cov(z, x) 0 (7) x Cov(z, u) = 0 Cov(z, x) 0 1 = 0 x = π 0 + π 1 z + v (8) π 1 = Cov(z, x)/v ar(z) (7) π 1 0 ( ) ˆβ 1 = n (z i z)(y i ȳ) i=1 n (z i z) (x i x) i=1 (9) 8 Bowden and Turkington (1984) Wooldridge (2003) 15 Wooldridge(2003) 9 Philip G. Wright(1928) B Stock and Trebbi (2003) Philip Wright Sewall Wright Philip Wright
9 ˆβ 0 = ȳ ˆβ 1 x (10) z = x (6) (7) p lim( ˆβ 1 ) = β 1 (6) (7) x u 10 z x z u p lim ˆβ 1 = β 1 + Corr(z, u) Corr(z, x) σu σ x (11) σ u σ x u x Corr(z, u) Corr(z, x) ˆβ 1 11 y 2 y 1 = β 0 + β 1 y 2 + β 2 z 1 + β 3 z 2 + u 1 (12) z 1 z 2 z 3 z 4 Hausman (1978) y 2 12 y 2 y 2 = α 0 + α 1 z 1 + α 2 z 2 + α 3 z 3 + α 4 z 4 + v 2 (13) z j u 1 v 2 u 1 y 2 u 1 1 = 0 y 2 u Weak Instrumental Variables Staiger and Stock (1997) Nelson and Sartz (1990) Gary Chamberlain Jerry Hausman Christopher Sims 12 Durbin-Wu-Hausman test Wu-Hausman test Bowden and Turkington (1984, pp.50-52) Davidson and MacKinnon (2004, pp )
10 u 1 = δ 1 v 2 + e 1 (14) 13 ˆv 12 y 1 = β 0 + β 1 y 2 + β 2 z 1 + β 3 z 2 + δ 1ˆv 2 + ε (15) t 1 = 0 y 2 (l) k l k (4) 6 (1) (4) û (2) û (l) R 2 (3) û nr 2 χ 2 (l k) (16) (Method of Moments) (Pearson, Karl) f(x θ) θ
11 E(x) = xf(x θ)dx = g(θ) (17) E(x) θ θ θ = g 1 (E(x)) (18) E(x) x ˆθ = g 1 ( x) (19) ˆθ θ 13 (Generalized Method of Moments; GMM) 14 (overidentified) 15 p q 2 Q(θ) arg min θ Q(θ) (20) Q(θ) = f(θ) Af(θ) A (weighting matrix) Q(θ) 0 f(θ) = 0 Q(θ) = 0 E(f(θ)) = 0 q f(θ) Hansen(1982) Hansen and Singleton(1982) 15 (Hansen(1982))
12 (Edgeworth, Francis Ysidro) 16 5 y = (y 1, y n ) θ = (θ 1, θ 2, θ p ) likelihood L(θ) 17 L(θ) θ θ maximum likelihood estimator θ L(θ) logl(θ) θ log(lθ) θ = 0 (21) y i = βx i + ε i i = 1,, n (22) ε i N(0, σ 2 ) 16 Pratt (1976) 1997 pp Silvey (1970) Cox and Hinkley (1974) (1995)
13 { log L(β) = log [(2πσ 2 ) n2 exp (y }] βx) (y βx) 2σ 2 = n 2 log(2πσ2 ) 1 2σ 2 (y βx) (y βx) β (23) β = ˆβ = x y/x x (24) log L(β) 2 log(lβ) β 2 = x x/σ 2 (25) β 2 log L(β) β I(θ) y y f θ (y) { 2 } log L(θ) I(θ) = E θ 2 { 2 } log f θ (y) = E θ 2 (26) I(θ) V {t(y)} 1 I(θ) (27) θ Z H 0 : θ = θ 0 n( θ θ 0 ) N(0, 1/I 1 (θ 0 )) θ 1 > θ 0 ni1 (θ 0 )( θ θ 0 ) > Z α (28) I 1 (θ) = I(θ)/n Z α α Z
14 H 0 : θ = θ 0 H 1 : θ θ 0 H 0 θ 0 χ 2 (1) 2 log L( θ) L(θ 0 ) > χ2 α(1)(= Z 2 α/2 ) (29) χ 2 α(1) = Z 2 α/2 (Wald Tests) r r(θ) = 0 r(θ) V ar(r(ˆθ)) R(θ 0 )V ar(ˆθ)r (θ 0 ) (30) R(θ) r i (θ)/ θ i r k V ar(ˆθ) W = r (ˆθ)(R(ˆθ) V ar(ˆθ)r (ˆθ)) 1 r(ˆθ) (31) H 0 : θ = θ 0 χ 2 (r) (Lagrange Multiplier Tests) l(θ) r(θ) = 0 θ l(θ) r (θ)λ (32) g( θ) R ( θ) λ = 0 (33) r( θ) = 0 λ LM = λ R( θ)ĩ 1 R ( θ) λ (34) H 0 : θ = θ 0 χ 2 (r) Davidson and MacKinnon (2004, 10
15 µ 1, µ 2,... µ a (a 3) analysis of variance: ANOVA (factor) (level (treatment 20 A A 1,..., A a r 1,..., r a A i j y ij y ij = µ i + ε ij i = 1, 2,..., a; j = 1,..., r i (35) µ i i ε ij N(0, σ 2 ) n = Σr i r i µ i µ = r i µ i n grand mean completely randomized design (randomized block design) 1969
16 (effect) α i = µ i µ r i α i = 0 (30) y ij = µ + α i + ε ij i = 1, 2,... ; j = 1,..., r i (36) ( µ)+ i α i + ε ij ) one-way layout A H 0 : µ 1 = µ 2 =... µ a H 0 : α 1 = α 2 =... α a = 0 S e = (y ij ȳ i ) 2 i j = yij 2 yi 2 r i (37) i j i S e σ 2 ν e = n a H 0 : µ 1 = µ 2 =... µ a y ij = µ + ε ij µ ȳ S T = i H 0 (y ij ȳ i ) 2 = yij 2 ȳi 2 n (38) j i j S A = S T S e = yi 2 r i y 2 n i = r i (ȳ i ȳ) 2 (39) i S A S e ν A = a 1 F = S A ν A S e ν e (40) ν A ν e F (ν A, ν e ) (ANOVA Test) (35) (S A ) (S A ν A ) (S e ) (S e ν e )
17 V i = (y ij ȳ i ) 2 (r i 1) i = 1,..., a i V e = (r i 1)V i (n a) = c i (y ij ȳ i ) 2 (n a) j B = (n a) log V e (r i 1) log V i (41) i H 0 : σ1 2 = σ2 2 =... = σa 2 a 1 B = (a 1) B { i 1 r 1 i 1 n a } (42) F 2 ( main effect () (one factor at a time experiment) ( (factorial experiment) ) A B ,pp ) 22
18 A i B j k y ijk AB a, b r y ijk = µ ij + e ijk i = 1, 2,... a; j = 1,..., b; k = 1, 2,..., r (43) µ ij A i B j e ijk N(0, σ 2 ) n = abr A i A i B j B j µ i = µ ij b, µ j = µ ij a, µ j i i µ ij ab (44) µ A i B j µ main effect α i = µ i µ, i = 1,... a; β j = µ j µ, j = 1,... b (45) µ ij A, B (interaction) (αβ) ij = µ ij (µ + α i + β j ) = µ ij µ i µ j + µ i = 1, 2,... a; j = 1, 2..., b (46) (38) (41) y ijk = µ + α i + β j + (αβ) ij + ε ijk (47) ()+( A )+( B )+( AB )+( ) Σα i = 0, Σβ j = 0, (αβ) ij = 0, j = 1,... b; (αβ) ij = 0, i = i j 1,... a S A, S B, S AB S e j v T = n 1, v A = a 1, v B = b 1, v AB = (a 1)(b 1), v e = ab(r 1) (48) V A = S A v A, V B = S B v B, V AB = S AB v AB, V e = S e v e (49) F H 0 : (αβ) ij 0 F AB = V AB V e H 0 : α i 0 F A = V A V e H 0 : β j 0 F B = V B V e
19 y ij = µ + α i + β j + (αβ) ij + ε ij (50) S e
20
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model
1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (
2004 1 4 4.1 Balestra and Nerlove (1966) 1960 1980 (GMM) Arellano and Bond (1991) Arellano (2003) N T N T Smith and Fuerter (2004) 1 (the random coefficient model) 1 1995 2001 Singer and Willett (2003
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n
. X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
03.Œk’ì
HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i
Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
waseda2010a-jukaiki1-main.dvi
November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
2
[email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)
5 : 1 1
5 : 1 1 2 2 1 y = β 0 + β 1 x + u x u Cov(x, u) 0 β 0 β 1 x x u z Cov(z, u) = 0 Cov(z, x) 0 z x (1) z u (2)z x (3)z x Cov(z, u) = 0 Cov(z, x) 0 1 = 0 x = π 0 + π 1 z + v 1 Bowden and Turkington (1984)
seminar0220a.dvi
1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }
1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l
1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr
3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)
1 (two-way ANOVA) - - A B 1 3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M=4 - - 1 (interaction) 4 - A - B (main effect) - A B (interaction) two-way ANOVA 5 1 A - H0: µ A 0 = µ A 1 = = µ A n - H1:
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d
2004 1 3 3.1 1 5 1 2 3.2 1 α = 0, λ t = 0 y it = βx it + µ i + ν it (1) 1 (1995)1998Fujiki and Kitamura (1995). 2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) +
2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2
1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an
dvi
2017 65 2 217 234 2017 Covariate Balancing Propensity Score 1 2 2017 1 15 4 30 8 28 Covariate Balancing Propensity Score CBPS, Imai and Ratkovic, 2014 1 0 1 2 Covariate Balancing Propensity Score CBPS
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1
t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.
solutionJIS.dvi
May 0, 006 6 [email protected] /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
C. R. McKenzie 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment group 1
KEIO UNIVERSITY MARKET QUALITY RESEARCH PROJECT (A 21 st Century Center of Excellence Project) DP2005-020 * C. R. McKenzie** 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
カルマンフィルターによるベータ推定( )
β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP
renshumondai-kaito.dvi
3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10
x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2
1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr
3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
第5章 偏微分方程式の境界値問題
October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199
Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel
Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology
Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology)
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1
2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,
