Microsoft Word - 計量研修テキスト_第5版).doc

Size: px
Start display at page:

Download "Microsoft Word - 計量研修テキスト_第5版).doc"

Transcription

1 Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date: 11/18/5 Time: 13:53 Sample: 1955Q1 1985Q4 Included observations: 114 Lag LogL LR FPE AIC SC HQ NA 5.89e e * * e e+17* * e e e e * 4.16e * indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion 情報量基準が最小になるものが最適ラグ次数 ゆえに最適ラグ次数は 3 297

2 作業手順 5 VAR の推定 Vector Autoregression Estimates Date: 11/15/5 Time: 14:39 Sample (adjusted): 1956Q2 1985Q4 Included observations: 119 after adjustments Standard errors in ( ) & t-statistics in [ ] D(IG9S) D(IP9S) D(CP9S) 被説明変数 D(IG9S(-1)) (.9991) (.767) (.16963) [ ] [.629] [.88387] D(IG9S(-2)) (.997) (.7591) (.16927) [-.1857] [ ] [ ] D(IG9S(-3)) (.1168) (.7742) (.17263) [-.377] [ ] [ ] 過去の公共投資 ( ) により 現在の民間消費 ( ) ~ 乗数効果? 説明変数 D(IP9S(-1)) (.1369) (.1361) (.2315) [ ] [ ] [ ] D(IP9S(-2)) (.1421) (.1819) (.24125) [ ] [ ] [-.345] 過去の民間投資 ( ) により 現在の公共投資 ( ) D(IP9S(-3)) (.1384) (.151) (.23436) [.65479] [.37667] [ ] 次頁に続く 298

3 D(CP9S(-1)) (.5769) (.4393) (.9795) [ ] [.42767] [ ] D(CP9S(-2)) (.5887) (.4482) (.9994) [ ] [.5732] [.18152] D(CP9S(-3)) (.5843) (.4448) (.9919) [.97382] [-.8358] [ ] C ( ) (116.62) (258.89) [ ] [.3347] [ ] R-squared Adj. R-squared Sum sq. resids E+8 S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent Determinant resid covariance (dof adj.) Determinant resid covariance 2.62E E+17 Log likelihood Akaike information criterion Schwarz criterion

4 Q9-2 テキスト P168 Granger 因果性の検定 VAR Granger Causality/Block Exogeneity Wald Tests Date: 11/17/5 Time: 17:25 Sample: 1955Q1 1985Q4 Included observations: 119 Dependent variable: D(IG9S) Excluded Chi-sq df Prob. 民間消費 (CP) 公共投資 (IG) D(IP9S) D(CP9S) All Dependent variable: D(IP9S) Excluded Chi-sq df Prob. D(IG9S) D(CP9S) All Dependent variable: D(CP9S) 公共投資 (IG) 民間消費 (CP) Excluded Chi-sq df Prob. D(IG9S) D(IP9S) All

5 Q9-3 テキスト P17 Toda and Yamamoto(1995) による Lag Augmented VAR 1レベル項での最適ラグ次数は 4 (AIC 基準 ) VAR Lag Order Selection Criteria Endogenous variables: IG9S IP9S CP9S Exogenous variables: C Date: 11/28/5 Time: 17:18 Sample: 1955Q1 1985Q4 Included observations: 115 Lag LogL LR FPE AIC SC HQ NA 8.73e e e * e e+17* * * e e e * 3.88e * indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion 2Q8-1 より利用する全ての変数の和分次数は 1 である Lag Augmented VAR のラグ次数は 4+1=5 31

6 3ラグ次数を5としたレベル項でのLag Augmented VARのもとでのGranger 因果性検定結果 VAR Granger Causality/Block Exogeneity Wald Tests Date: 2/5/6 Time: 14:15 Sample: 1955Q1 1985Q4 Included observations: 118 Dependent variable: IG9S Excluded Chi-sq df Prob. IP9S CP9S All Dependent variable: IP9S Excluded Chi-sq df Prob. IG9S CP9S All Dependent variable: CP9S Excluded Chi-sq df Prob. IG9S IP9S All 乗数効果 : 公共投資 (IG) 民間消費 (CP) 帰無仮説 (Granger の意味での因果性のないこと ) が棄却される 因果性あり 32

7 Q9-4 テキスト P175 インパルス応答関数 Response to Cholesky One S.D. Innovations ± 2 S.E Response of D(IG9S) to D(IG9S) Response of D(IG9S) to D(IP9S) Response of D(IG9S) to D(CP9S) Response of D(IP9S) to D(IG9S) Response of D(IP9S) to D(IP9S) Response of D(IP9S) to D(CP9S) Response of D(CP9S) to D(IG9S) 16 Response of D(CP9S) to D(IP9S) 16 Response of D(CP9S) to D(CP9S) 公共投資にショックが加わったと きの民間消費の反応 33

8 累積インパルス応答関数 Accumulated Response to Cholesky One S.D. Innovations ± 2 S.E. 1 Accumulated Response of D(IG9S) to D(IG9S) 1 Accumulated Response of D(IG9S) to D(IP9S) 1 Accumulated Response of D(IG9S) to D(CP9S) Accumulated Response of D(IP9S) to D(IG9S) 25 Accumulated Response of D(IP9S) to D(IP9S) 25 Accumulated Response of D(IP9S) to D(CP9S) Accumulated Response of D(CP9S) to D(IG9S) Accumulated Response of D(CP9S) to D(IP9S) Accumulated Response of D(CP9S) to D(CP9S)

9 Q9-5 テキスト P176 インパルス関数 Response to Cholesky One S.D. Innovations ± 2 S.E. 15 Response of D(CP9S) to D(CP9S) 15 Response of D(CP9S) to D(IP9S) 15 Response of D(CP9S) to D(IG9S) Response of D(IP9S) to D(CP9S) Response of D(IP9S) to D(IP9S) Response of D(IP9S) to D(IG9S) Response of D(IG9S) to D(CP9S) Response of D(IG9S) to D(IP9S) Response of D(IG9S) to D(IG9S) 公共投資にショックが生じたと きの民間消費の反応 35

10 累積インパルス応答関数 Accumulated Response to Cholesky One S.D. Innovations ± 2 S.E. 3 Accumulated Response of D(CP9S) to D(CP9S) 3 Accumulated Response of D(CP9S) to D(IP9S) 3 Accumulated Response of D(CP9S) to D(IG9S) Accumulated Response of D(IP9S) to D(CP9S) 2 Accumulated Response of D(IP9S) to D(IP9S) 2 Accumulated Response of D(IP9S) to D(IG9S) Accumulated Response of D(IG9S) to D(CP9S) 1 Accumulated Response of D(IG9S) to D(IP9S) 1 Accumulated Response of D(IG9S) to D(IG9S)

11 演習 Johansen 型の共和分検定 Date: 2/5/6 Time: 14:2 Sample (adjusted): 1989M4 24M1 Included observations: 187 after adjustments Trend assumption: Linear deterministic trend (restricted) Series: LER LUSEXP LJPEXP Lags interval (in first differences): 1 to 2 Unrestricted Cointegration Rank Test (Trace) トレース検定 Hypothesized Trace.5 Critical No. of CE(s) Eigenvalue Statistic Value Prob.** None * At most At most Trace test indicates 1 cointegrating eqn(s) at the.5 level * denotes rejection of the hypothesis at the.5 level **MacKinnon-Haug-Michelis (1999) p-values 最大固有値検定 Unrestricted Cointegration Rank Test (Maximum Eigenvalue) Hypothesized Max-Eigen.5 Critical No. of CE(s) Eigenvalue Statistic Value Prob.** None * At most At most Max-eigenvalue test indicates 1 cointegrating eqn(s) at the.5 level * denotes rejection of the hypothesis at the.5 level **MacKinnon-Haug-Michelis (1999) p-values Unrestricted Cointegrating Coefficients (normalized by b'*s11*b=i): LER LUSEXP 37

12 Unrestricted Adjustment Coefficients (alpha): D(LER) D(LUSEXP) E-5 D(LJPEXP) E-5 1 Cointegrating Equation(s): Log likelihood Normalized cointegrating coefficients (standard error in parentheses) LER LUSEXP (.23293) (.1423) (.26) Adjustment coefficients (standard error in parentheses) D(LER) (.6923) D(LUSEXP).4847 (.763) D(LJPEXP) (.263) 2 Cointegrating Equation(s): Log likelihood Normalized cointegrating coefficients (standard error in parentheses) LER LUSEXP (.77392) (.147) (.37858) (.72) Adjustment coefficients (standard error in parentheses) D(LER) (.1231) (.21965) D(LUSEXP) (.179) (.2317) D(LJPEXP) (.3894) (.836) 38

13 3)Error Correction VAR Vector Error Correction Estimates Date: 2/5/6 Time: 14:23 Sample (adjusted): 1989M4 24M1 Included observations: 187 after adjustments Standard errors in ( ) & t-statistics in [ ] Cointegrating Eq: CointEq1 LER(-1) 1. LUSEXP(-1) (.23293) [ 7.729] LJPEXP(-1) (.1423) (.26) [ ] C Error Correction: D(LER) D(LUSEXP) D(LJPEXP) CointEq (.6923) (.763) (.263) [ ] [.6354] [ ] D(LER(-1)) (.13165) (.1451) (.52) [-2.145] [ ] [ ] D(LER(-2)) (.14446) (.1592) (.5489) [-.8435] [ ] [.8973] D(LUSEXP(-1)) (.6971) (.768) (.26483) 39

14 [ ] [ ] [ ] D(LUSEXP(-2)) (.68633) (.7562) (.2678) [ ] [ ] [ ] D(LJPEXP(-1)) (.3327) (.3341) (.11523) [ 1.853] [.945] [-.7138] D(LJPEXP(-2)) (.1969) (.2169) (.7481) [ ] [ ] [ ] C (.243) (.27) (.92) [.37175] [ 1.597] [ ] R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent Determinant resid covariance (dof adj.) Determinant resid covariance 7.69E E-13 Log likelihood Akaike information criterion Schwarz criterion

15 参考 Engle-Granger 検定で得られた残差 ( 誤差修正項 ) に立脚した ECM の推定 定式化は Granger の表現定理に準拠 Estimation Equation: ===================== D(LER) = C(1)*D(LER(-1)) + C(2)*D(LJPEXP(-1)) + C(3)*D(LUSEXP(-1)) + C(4)*RESID1(-1) + C(5) Dependent Variable: D(LER) Method: Least Squares Date: 11/17/5 Time: 16:53 Sample (adjusted): 1989M3 24M1 Included observations: 188 after adjustments Variable Coefficient Std. Error t-statistic Prob. D(LER(-1)) D(LJPEXP(-1)) D(LUSEXP(-1)) RESID1(-1) C R-squared Mean dependent var Adjusted R-squared S.D. dependent var.3398 S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic).7989 やはり誤差修正項が望ましい符号条件を満たしていない 311

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05

More information

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5 第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

TS002

TS002 TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar

More information

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp TS002 Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp-063 VAR postestimation vargranger Granger 86

More information

R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッ

R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッ R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の R にパッケージを追加していくことになる インターネットに接続してあるパソコンで

More information

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞> 1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t

以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 1 + + Φ p y t p + ε t, ε t ~ W.N(Ω), を推定することを考える (

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

パネル・データの分析

パネル・データの分析 パネル データの分析 内容 パネル データとは pooled cross section data の分析 パネルデータの分析 DID (Difference in Differences) モデル パネル データの分析 階差モデル (first difference model) fixed effects model random effects model パネル分析の実際 データ セットの作成

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

操作変数法

操作変数法 操作変数法 Instrumental Varables Method 誤差項と説明変数の相関 説明変数の誤差 説明変数から省かれた変数の影響 誤差項 説明変数が内生変数であるとき 連立方程式モデル --------------------------- 誤差項と説明変数の間に相関がある場合には, 係数の推定値はバイアスを持つ 操作変数法 (Instrumental Varables Method)

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

ODAとFDIの相互関係 ~先進国5カ国における考察~

ODAとFDIの相互関係 ~先進国5カ国における考察~ ODA と FDI の相互関係 ~ 先進国 5 カ国における考察 ~ 東京外国語大学外国語学部 イタリア語専攻 4 年 瀬脇理 目次 第 1 章導入 ~ 研究背景 定義 先行研究第 2 章モデル ~ モデルと分析手法の説明第 3 章データ ~ データの出典第 4 章分析 ~ 分析結果と考察第 5 章結論第 6 章付録 2001 2002 2003 2004 2005 2006 2007 2008 2009

More information

Microsoft Word - eviews2_

Microsoft Word - eviews2_ 2018/02/02 新谷元嗣 藪友良 高尾庄吾 2 章 : 定常時系列モデル ここでは教科書 2 章 ( 定常時系列モデル ) の内容を再現する 具体的には ARMA モデルにおける同定 推定の手順 構造変化の問題を扱う 1 コレログラム Workfile を新規作成し ホームページの SIM2.xls から データを読み込もう 人工的に発生させたデータなので Date specification

More information

Use R

Use R Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,

More information

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr 3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度-

事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度- 事例研究 ( ミクロ経済政策 問題分析 III) - 規制産業と料金 価格制度 - ( 第 8 回 手法 (4) 応用データ解析 / 時系列分析 ) 2011 年 6 月 9 日 戒能一成 0. 本講の目的 ( 手法面 ) - 応用データ解析の手法のうち 時系列分析 (ARMAX, 共和分, VAR) パネルデータ分析の概要を理解する ( 内容面 ) - 計量経済学 統計学を実戦で応用する際の留意点を理解する

More information

3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10

3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10 第 10 章 くさりのない犬 はじめにこの章では 単位根検定や 共和分検定を説明する データが単位根を持つ系列の場合 見せかけの相関をする場合があり 推計結果が信用できなくなる 経済分析の手順として 系列が定常系列か単位根を持つ非定常系列かを見極め 定常系列であればそのまま推計し 非定常系列であれば階差をとって推計するのが一般的である 1. ランダムウオーク 最も簡単な単位根を持つ系列としてランダムウオークがある

More information

卒業論文

卒業論文 Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1

More information

50-4 平井健之.pwd

50-4 平井健之.pwd GDP GNP Gupta 1967, Wagner and Weber 1977, Mann 1980, Abizadeh and Gray 1985, Ram 1987, Abizadeh and Yousefi 1988, Nagarajan and Spears 1990 GDP GNP GDP GNP GDP GNP Adolph Wagner Wagner 1967 Ram 1987,

More information

回帰分析 単回帰

回帰分析 単回帰 回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)

More information

評論・社会科学 123号(P)☆/1.福田

評論・社会科学 123号(P)☆/1.福田 VECM 2002 1 2007 12 VECM 55 VECM 1 2 3 3-1ECM 3-2 3-3VECM 3-4 4 1 2017 9 28 2017 10 16 2 1 1 2015, 79-85 BLUEBest Linear Unbiased Estimator 1 Vector Error-Correction Model VECM II III VECM VECM 55 15-34

More information

日本における化石燃料と経済成長の因果性分析 - 多変数アプローチに基づいて 石田葉月 Discussion Paper April 2011 Graduate School of Economics and Osaka School of International Public Pol

日本における化石燃料と経済成長の因果性分析 - 多変数アプローチに基づいて 石田葉月 Discussion Paper April 2011 Graduate School of Economics and Osaka School of International Public Pol Discussion Papers In Economics And Business 日本における化石燃料と経済成長の因果性分析 - 多変数アプローチに基づいて 石田葉月 Discussion Paper 11-13 Graduate School of Economics and Osaka School of International Public Policy (OSIPP) Osaka

More information

Microsoft Word - eviews4_

Microsoft Word - eviews4_ 4 章 : トレンドモデル 2018/02/02 新谷元嗣 藪友良 高尾庄吾 教科書の 4 章の内容を確認しよう 具体的には 単位根検定として ADF 検定 ERS 検定 ペロン検定 パネル単位根検定 またトレンド分解として HP 分解を説明する 1. ADF 検定教科書の 4 章 7 節の例 ( ラグの選択 ) を通して 単位根検定の手順を確認しよう まず LAGLENGTH.XLS のデータを

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

II (2011 ) ( ) α β û i R

II (2011 ) ( ) α β û i R II 3 9 9 α β 3 û i 4 R 3 5 4 4 3 6 3 6 3 6 4 6 5 3 6 F 5 7 F 6 8 GLS 8 8 heil and Goldberger Model 9 MLE 9 9 I 3 93 II 3 94 AR 4 95 5 96 6 6 8 3 3 3 3 3 i 3 33 3 Wald, LM, LR 33 3 34 4 38 5 39 6 43 7 44

More information

統計研修R分散分析(追加).indd

統計研修R分散分析(追加).indd http://cse.niaes.affrc.go.jp/minaka/r/r-top.html > mm mm TRT DATA 1 DM1 2537 2 DM1 2069 3 DM1 2104 4 DM1 1797 5 DM2 3366 6 DM2 2591 7 DM2 2211 8

More information

1 I EViews View Proc Freeze

1 I EViews View Proc Freeze EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]

More information

為替の実体経済に与える影響の実証分析 訪日外国人の消費動向に着目して 上智大学経済学部経済学科 年嶋中由理子 Ⅰ. 要旨本研究では 為替変動の国内総生産 (GDP) に与える効果を 訪日外国人消費動向に着目して分析した VAR(Vector AutoRegressive) モデルを用いて の 輸出

為替の実体経済に与える影響の実証分析 訪日外国人の消費動向に着目して 上智大学経済学部経済学科 年嶋中由理子 Ⅰ. 要旨本研究では 為替変動の国内総生産 (GDP) に与える効果を 訪日外国人消費動向に着目して分析した VAR(Vector AutoRegressive) モデルを用いて の 輸出 為替の実体経済に与える影響の実証分析 訪日外国人の消費動向に着目して 上智大学経済学部経済学科 年 嶋中由理子 為替の実体経済に与える影響の実証分析 訪日外国人の消費動向に着目して 上智大学経済学部経済学科 年嶋中由理子 Ⅰ. 要旨本研究では 為替変動の国内総生産 (GDP) に与える効果を 訪日外国人消費動向に着目して分析した VAR(Vector AutoRegressive) モデルを用いて

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

Microsoft Word - eviews1_

Microsoft Word - eviews1_ 1 章 : はじめての EViews 2018/02/02 新谷元嗣 藪友良 高尾庄吾 1 ここでは分析を行うにあたって 代表的なツールの 1 つとして EViews について解説しよう EViews は 時系列分析に強みを持つ統計ソフトであり その使い易さ また高度な分析に対応できることから 官公庁を中心に広く用いられている 1. データの入力と保存 EViews では データを特有のファイル形式である

More information

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関 R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

回帰分析 重回帰(1)

回帰分析 重回帰(1) 回帰分析 重回帰 (1) 項目 重回帰モデルの前提 最小二乗推定量の性質 仮説検定 ( 単一の制約 ) 決定係数 Eviews での回帰分析の実際 非線形効果 ダミー変数 定数項ダミー 傾きのダミー 3 つ以上のカテゴリー 重回帰モデル multiple regression model 説明変数が 個以上 y 1 x 1 x k x k u i y x i 他の説明変数を一定に保っておいて,x i

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS ([email protected])! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

Microsoft PowerPoint - ch04j

Microsoft PowerPoint - ch04j Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数

More information