.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr
|
|
|
- えの がうん
- 7 years ago
- Views:
Transcription
1 3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized Method of Moments). GMM TSLS( ), GMM TSLS, TSLS, TwoSLS1.. use mus06data.dta, clear. global x2list totchr age female blhisp linc. ivregress 2sls ldrugexp (hi empunion=ssiratio ) $x2list,vce(robust) ( ). estimates store TwoSLS ( ) z. E {z i (y i x iβ)} = 0 (14) 2. x2list, ivmodel,.. global ivmodel ldrugexp (hi empunion=ssiratio multlc) $x2list. quietly ivregress 2sls $ivmodel,vce(robust). est store TwoSLS2 GMM.. quietly ivregress gmm $ivmodel,wmatrix(robust). est store GMM het 4 GMM 23
2 .. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr age female blhisp linc _cons legend: b/se, TwoSLS1 TwoSLS2 GMM het 10%., TwoSLS2 GMM het,,.. 2, ( ). gmm wmatrix(robust), 2sls vce(robust) ,. (test of overientifying restriction) 6.,,. 2 gmm.. quietly ivregress gmm $ivmodel,wmatrix(robust). estat overid Test of overidentifying restriction: Hansen s J chi2(1) = (p = ) 5 Microeconometrics Using Stata, Revised Edition gmm 6 Hansen Sargan Hansen-Sargan 24
3 5%, ivregress gmm ldrugexp (hi empunion=ssiratio lowincome multlc firmsz) $x2list, >wmatrix(robust) Instrumental variables (GMM) regression Number of obs = 10,089 Wald chi2(6) = R-squared = GMM weight matrix: Robust Root MSE = Robust ldrugexp Coef. Std. Err. z P> z [95% Conf. Interval] hi_empunion totchr age female blhisp linc _cons Instrumented: Instruments: hi_empunion totchr age female blhisp linc ssiratio lowincome multlc firmsz. estat overid Test of overidentifying restriction: Hansen s J chi2(3) = (p = ) 1%,., hi empunion ,. GMM, TSLS,. 3.3 GMM,. Microeconometrics Using Stata, Revised Edition, Stata Press 9 Linear panel-data models: Extensions.,. y it = γ 1 y i,t γ p y i,t p + x itβ + α i + ϵ it, t = p + 1,..., T (15) α i. x it ϵ it., γ 1,, γ p β 7. AR(1) y it = γ 1 y i,t 1 + α i + ϵ it 7 25
4 ,. 1 ϵ i1. y,., 2, γ 1 1., γ 1 0, α i.,,. 15 within 8., within y i,t 1 ȳ i ϵ it ϵ i., within p = 1,. y it = γ 1 y i,t 1 + x itβ + α i + ϵ it ȳ i = γ 1 ȳ i + x iβ + α i + ϵ i, γ, within. y it ȳ i = γ 1 (y i,t 1 ȳ i ) + (x it x i) β+ (ϵ it ϵ i ) 15 ϵ it, y i,t 1 ȳ i ϵ it ϵ i., y i,t 1 ϵ i,t 1., ϵ i, ϵ i,t 1, y i,t 1 ϵ i. (y i,t 1 ȳ i ),,., within,,,. FD within FD(first difference).,. y it = γ 1 y i,t γ p y i,t p + x itβ + ϵ it, t = p + 1,..., T (16) 15. within,., ϵ it., FD, y i,t 1 ϵ it, OLS. y it = γ 1 y i,t 1 + γ 2 y i,t 2 + ϵ it, t = p + 1,..., T, y i,t 1 = y i,t 1 y i,t 2 ϵ it = ϵ it ϵ i,t 1., y i,t 1 ϵ i,t 1,., y i,t 2. (y i,t 2 y i,t 3 ) (ϵ it ϵ i,t 1 ),, y i,t 2 ϵ it 8 within 26
5 ., FD p 2. Anderson and Hsiao (1981) ϵ it y i,t 2 y i,t 1., x it,., Arellano and Bond (1991),, ϵ it,. Arellano and Bond. 3.4 Arellano-Bond : AR(2).,. 16 AR,,. GMM, Arellano-Bond. y it = α + γ 1 y i,t 1 + γ 2 y i,t 2 + ϵ it, t = 4, 5, 6, 7 7.,, 4. t y y y ( 1) y ( 2) ϵ ϵ 1 y i1 ϵ i1 2 y i2 y i2 y i1 ϵ i2 ϵ i2 ϵ i1 3 y i3 y i3 y i2 y i2 y i1 ϵ i3 ϵ i3 ϵ i2 4 y i4 y i4 y i3 y i3 y i2 y i2 y i1 ϵ i4 ϵ i4 ϵ i3 5 y i5 y i5 y i4 y i4 y i3 y i3 y i2 ϵ i5 ϵ i5 ϵ i4 6 y i6 y i6 y i5 y i5 y i4 y i4 y i3 ϵ i6 ϵ i6 ϵ i5 7 y i7 y i7 y i6 y i6 y i5 y i5 y i4 ϵ i7 ϵ i7 ϵ i6, t = 4 ϵ i4 y i1 y i2, t = 5 ϵ i5 y i1, y i2, y i3, t = 6 4, t = 7 5., = 14,,
6 mus08psidextract.dta, AR(2)... use mus08psidextract.dta, clear. xtabond lwage,lags(2) vce(robust) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 15 Wald chi2(2) = One-step results (Std. Err. adjusted for clustering on id) Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L _cons Instruments for differenced equation GMM-type: L(2/.).lwage Instruments for level equation Standard: _cons 4,165,, ( ) = 2, 380. lwage L1. L2. y i,t 1 y i,t 2., FD. L(2/.), t y i,t 2, y i,t 3,..., y i,1., = 0.84,. GMM 1, (S.E ) 2. 28
7 . xtabond lwage,lags(2) twostep vce(robust) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 15 Wald chi2(2) = Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L _cons Instruments for differenced equation GMM-type: L(2/.).lwage Instruments for level equation Standard: _cons 1 2, S.E. 2. T, Arellano-Bond,,. maxldep()., t y i,t 2.. xtabond lwage,lags(2) vce(robust) maxldep(1) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 5 Wald chi2(2) = One-step results (Std. Err. adjusted for clustering on id) Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L _cons Instruments for differenced equation GMM-type: L(2/2).lwage 29
8 Instruments for level equation Standard: _cons t = 4 7 y i2, y i3, y i4, y i5 5.,, 6., maxldep(2), S.E., xtabond xtabond Arellano-Bond.,,, fem( ),blk( ),ed( ). occ( 1), south( 1), smsa( 1),ind( 1)... xtabond lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) > endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep vce(robust) > artests(3) Arellano-Bond dynamic panel-data estimation Number of obs = 2,380 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 4 avg = 4 max = 4 Number of instruments = 40 Wald chi2(10) = Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L wks L ms union occ south smsa ind _cons Instruments for differenced equation GMM-type: L(2/4).lwage L(1/2).L.wks L(2/3).ms L(2/3).union Standard: D.occ D.south D.smsa D.ind Instruments for level equation Standard: _cons 30
9 , occ, endogenous() ms union., lag(0,2), 0., ms union 1., L1.., 2., ms ms t 1 ms t 2., pre(wks,lag(1,2)) wks 9. endogenous().,, 5%. ϵ it., AR(2), 2 ϵ it ϵ i,t k (k 2)., COV ( ϵ it, ϵ i,t 1 ) = COV (ϵ it ϵ i,t 1, ϵ i,t 1 ϵ i,t 2 ) = COV (ϵ i,t 1, ϵ i,t 1 ) 0,, k 2. COV ( ϵ it, ϵ i,t k ) = COV (ϵ it ϵ i,t 1, ϵ i,t k ϵ i,t k 1 ) = 0. artests(). artests(3)., artests(2),, 3.. estat abond Arellano-Bond test for zero autocorrelation in first-differenced errors Order z Prob > z H0: no autocorrelation. 2,.,. estat sargan, vce(robust),,. 9 31
10 . xtabond lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) > endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep artests(3). estat sargan. estat sargan Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid chi2(29) = Prob > chi2 = %. 3.6 xtdpdsys Arellano-Bond E (y is ϵ it ) = 0 (s t 2), FD y i,t 2, y i,t 3,.... Arellano and Bover (1995) Blundell and Bond (1998)., E (y i,y 1 ϵ it ) = 0, Stata xtdpdsys xtdpdsys lwage occ south smsa ind,lags(2) maxldep(3) pre(wks,lag(1,2)) >endogenous(ms,lag(0,2)) endogenous(union,lag(0,2)) twostep vce(robust) >artests(3) 10 ado xtabond2 xtabond 32
11 System dynamic panel-data estimation Number of obs = 2,975 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 5 avg = 5 max = 5 Number of instruments = 60 Wald chi2(10) = Two-step results WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L wks L ms union occ south smsa ind _cons Instruments for differenced equation GMM-type: L(2/4).lwage L(1/2).L.wks L(2/3).ms L(2/3).union Standard: D.occ D.south D.smsa D.ind Instruments for level equation GMM-type: LD.lwage LD.wks LD.ms LD.union Standard: _cons ,., 10-60%. xtabond, estat abond,, vce(robust), estat sargan. 3.7 xtdpd ϵ it., estat abond?. ϵ it xtdpd Stata,.. xtdpd L(0/2).lwage L(0/1).wks occ south smsa ind ms union, >div(occ south smsa ind) dgmmiv(lwage,lagrange(2 4)) >dgmmiv(ms union,lagrange(2 3)) dgmmiv(l.wks,lagrange(1 2)) >lgmmiv(lwage wks ms union) twostep vce(robust) artests(3) 33
12 Dynamic panel-data estimation Number of obs = 2,975 Group variable: id Number of groups = 595 Time variable: t Obs per group: min = 5 avg = 5 max = 5 Number of instruments = 60 Wald chi2(10) = Two-step results (Std. Err. adjusted for clustering on id) WC-Robust lwage Coef. Std. Err. z P> z [95% Conf. Interval] lwage L L wks L occ south smsa ind ms union _cons Instruments for differenced equation GMM-type: L(2/4).lwage L(2/3).ms L(2/3).union L(1/2).L.wks Standard: D.occ D.south D.smsa D.ind Instruments for level equation GMM-type: LD.lwage LD.wks LD.ms LD.union Standard: _cons 15 ϵ it MA(1),, ϵ it = η it + δη i,t 1. η it i.i.id.. GMM GMM. GMM TSLS,. ( ),, GMM,.. 34
13 ,... Y i = β 0 + β 1 X 1i + + β k X ki + β k+1 W 1i + + β k+r W ri + u i, i = 1,..., n, Y i β 0, β 1,..., β k+r X 1i,..., X ki k, u i. W 1i...., W ri r u i. u i,. Z 1i..., Z mi m. (m > k),. m < k, ( ), m = k.,,,
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (
2004 1 4 4.1 Balestra and Nerlove (1966) 1960 1980 (GMM) Arellano and Bond (1991) Arellano (2003) N T N T Smith and Fuerter (2004) 1 (the random coefficient model) 1 1995 2001 Singer and Willett (2003
Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21
Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto
Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s
BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
こんにちは由美子です
1 2 λ 3 λ λ. correlate father mother first second (obs=20) father mother first second ---------+------------------------------------ father 1.0000 mother 0.2254 1.0000 first 0.7919 0.5841 1.0000 second
エクセルに出力します 推定結果の表は r(table) という行列で保存されますので matlist r(table) コマンドで 得られたの一覧を表示させます. use clear. regress
Stata+α putexcel を使って推定結果をエクセルに出力する putexcel には様々な機能がありますが 今回は Stata の回帰分析の推定結果をエクセルに 出力します Stata での回帰分析の結果 sizplace Coef. age sex _cons.0067795 -.0872963 4.976162 Std. Err. t.0015178.0523214.1103018 4.47-1.67
Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide
PS001 Stata 11 whitepaper mwp 4 mwp-027 23 mwp-028 / 41 mwp-001 51 mwp-078 62 mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide/long 100 mwp-036 ivregress 110 mwp-082 logistic/logit
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
5 : 1 1
5 : 1 1 2 2 1 y = β 0 + β 1 x + u x u Cov(x, u) 0 β 0 β 1 x x u z Cov(z, u) = 0 Cov(z, x) 0 z x (1) z u (2)z x (3)z x Cov(z, u) = 0 Cov(z, x) 0 1 = 0 x = π 0 + π 1 z + v 1 Bowden and Turkington (1984)
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model
1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14
1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1
2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1
9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1 2 2 y i = 1, 2, 3,...J (1 < 2 < 3
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
オーストラリア研究紀要 36号(P)☆/3.橋本
36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics
こんにちは由美子です
Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
浜松医科大学紀要
On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian
2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
TS002
TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar
Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp
TS002 Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp-063 VAR postestimation vargranger Granger 86
Microsoft Word - 計量研修テキスト_第5版).doc
Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349
パネル・データの分析
パネル データの分析 内容 パネル データとは pooled cross section data の分析 パネルデータの分析 DID (Difference in Differences) モデル パネル データの分析 階差モデル (first difference model) fixed effects model random effects model パネル分析の実際 データ セットの作成
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
untitled
Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1
Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理
R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)
082_rev2_utf8.pdf
3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
Solution Report
CGE 3 GAMS * Date: 2018/07/24, Version 1.1 1 2 2 GAMSIDE 3 2.1 GAMS................................. 3 2.2 GAMSIDE................................ 3 2.3 GAMSIDE............................. 7 3 GAMS 11
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %.,
Title Author(s) 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元, 大輔 ; 谷﨑, 久志 Citation 大阪大学経済学. 65(2) P.39-P.55 Issue Date 2015-09 Text Version publisher URL https://doi.org/10.18910/57097 DOI 10.18910/57097
2 2 2 (Poisson Distribution) P (y = j) = e λ λ j λ > 0, j = 0, 1, 2... j! j! j E(y) = V ar(y) = λ λ y x λ = λ(x iβ) f(y i x iβ) = exp( exp(x i β)) exp
11 1 1 Cameron and Trivedi (1998,2005) Winkelmann(1997) 1 Bortkiewicz(1898) 1 2 2 2 (Poisson Distribution) P (y = j) = e λ λ j λ > 0, j = 0, 1, 2... j! j! j E(y) = V ar(y) = λ λ y x λ = λ(x iβ) f(y i x
一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
.. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!
Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology
Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology)
2 ID POS 1... 1 2... 2 2.1 ID POS... 2 2.2... 3 3... 5 3.1... 5 3.2... 6 3.2.1... 6 3.2.2... 7 3.3... 7 3.3.1... 7 3.3.2... 8 3.3.3... 8 3.4... 9 4... 11 4.1... 11 4.2... 15 4.3... 27 5... 35... 36...
Microsoft Word - 計量研修テキスト_第5版).doc
Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975
操作変数法
操作変数法 Instrumental Varables Method 誤差項と説明変数の相関 説明変数の誤差 説明変数から省かれた変数の影響 誤差項 説明変数が内生変数であるとき 連立方程式モデル --------------------------- 誤差項と説明変数の間に相関がある場合には, 係数の推定値はバイアスを持つ 操作変数法 (Instrumental Varables Method)
PowerPoint プレゼンテーション
日本の政府債務と経済成長 小黒曜子 明海大学経済学部 & ICU 社会科学研究所 (SSRI) 研究員 研究の背景 政府債務の増加は成長率に負の影響? (Cf. ex. Reinhart and Rogoff (2010)) エンゲル曲線を用いて日本の 実際の 生活水準を加味すると インフレ率と成長率にバイアスを確認 CPI : 実際の物価水準よりも高く ( 1% 程度 ) 算出される傾向 (eg.
第2回:データの加工・整理
2 2018 4 13 1 / 24 1. 2. Excel 3. Stata 4. Stata 5. Stata 2 / 24 1 cross section data e.g., 47 2009 time series data e.g., 1999 2014 5 panel data e.g., 47 1999 2014 5 3 / 24 micro data aggregate data 4
技術研究報告第26号
1) 2) 3) 250Hz 500Hz RESEARCH ON THE PHYSICAL VOLUME OF THE DYNAMIC VIBRATION RESPONSE AND THE REDUCTION OF THE FLOOR IMPACT SOUND LEVEL IN FLOORS OF RESIDENTIAL HOUSING Hideo WATANABE *1 This study was
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
インターネットを活用した経済分析 - フリーソフト Rを使おう
R 1 1 1 2017 2 15 2017 2 15 1/64 2 R 3 R R RESAS 2017 2 15 2/64 2 R 3 R R RESAS 2017 2 15 3/64 2-4 ( ) ( (80%) (20%) 2017 2 15 4/64 PC LAN R 2017 2 15 5/64 R R 2017 2 15 6/64 3-4 R 15 + 2017 2 15 7/64
ed srv.cc.hit-u.ac.jp
5 [ ] Two-Part Model contract decision frequency decision 1st Part 0.034 2nd Part 0.902 Full Price Model Full Price Elasticity Two-Part Model 1 15 1 2003 31.5 8.55 50.4 65 2 E-Mail: ed042007 srv.cc.hit-u.ac.jp
2 PC 2.1 PC 3 Stata ado Help Official Update Recommendation : compare these dates with what is available from update query curre
Stata 1 Stata Stata web site 1 Stata is used by medical researchers, biostatisticians, epidemiologists, economists, sociologists, political scientists, geographers, psychologists, social scientists, and
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
