phaleron decoupling and E hase transitio 2/45

Size: px
Start display at page:

Download "phaleron decoupling and E hase transitio 2/45"

Transcription

1 1/45

2 phaleron decoupling and E hase transitio 2/45

3 Sphaleron σφαλϵρos = ready-to-fall, deceitful [cf. a sphalt] [Klinkhamer and Manton, Phys. Rev. D30 ('84)] 4-dim. SU(2) gauge + 1-doublet Higgs 2-dim. U(1) gauge-higgs model 2-dim. O(3) nonlinear sigma model 2-Higgs-Doublet Model MSSM with V eff (T ) Next-to-MSSM [Klinkhamer and Manton, Phys. Rev. D30 ('84)] [Bocharev and Shaposhnikov, Mod. Phys. Lett. A2 ('87)] [Mottola and Wipf, Phys. Rev. D39 ('89)] [Kastening, Peccei and Zhang, Phys. Lett. B266 ('91)] [Moreno, Oaknin and Quiros, Nucl. Phys. B483 ('97)] [KF, Kakuto, Tao and Toyoda, Prog. Theor. Phys. 114 ('05)] phaleron decoupling and E hase transitio 3/45

4 (saddle point) = least-energy path maximum-energy configuration Energy vacuum configuration space N CS =1 vacuum N CS =0 least-energy path/gauge trf. = noncontractible loop highest symmetry config. [Manton, Phys. Rev. D28 ('83)] phaleron decoupling and E hase transitio 4/45

5 B L µ j µ B+L = N f 16π 2[g2 2Tr(F µν F µν ) g 2 1B µν Bµν ] µ j µ B L = 0 N f = F µν 1 2 ϵµνρσ F ρσ B(t f ) B(t i ) = N f 32π 2 tf t i d 4 x [ g 2 2Tr(F µν F µν ) g 2 1B µν Bµν ] = N f [N CS (t f ) N CS (t i )] N CS Chern-Simons number: A 0 = 0-gauge N CS (t) = 1 32π 2 d 3 x ϵ ijk [g 2Tr (F 2 ij A k 23 ) g 2A i A j A k g 21B ] ij B k t phaleron decoupling and E hase transitio 5/45

6 : E = 1 2 (E2 + B 2 ) = 0 F µν = B µν = 0 A µ = iu 1 µ U, B µ = µ v with U SU(2) U(x) : S 3 U SU(2) S 3 π 3 (S 3 ) Z = U(x) N CS ig2 3 d 3 x ϵ 48π 2 ijk Tr[U 1 i U U 1 j U U 1 k U] winding number U(1) axial U(1) anomaly axial fermion Q 5 = N CS (t) = g 4π g 2π tf dt dx ϵ µν F µν = N CS (t f ) N CS (t i ), t i dx A 1 (t, x). : A 1 (x) = 1 g xα(x) with α( ) α( ) = 2πN... N CS = N phaleron decoupling and E hase transitio 6/45

7 E N CS B 0 { e 2S instanton = e 8π2 /g 2 2 e e E sph/t... T > T C (B + L) 0 phaleron decoupling and E hase transitio 7/45

8 2.1 N CS [Atiyah and Singer, 1968] n R n L = ν = g2 16π d 4 xtr(f µν F µν ) (chiral fermions) = Pontrjagin index = instanton number ψ L E ψ R E [Ambjørn, et al. Nucl. Phys. B221 ('83)] p ǫ µν F µν 0 p vacuum particle production phaleron decoupling and E hase transitio 8/45

9 (1 + 1) Dirac eq. iγ µ ( µ iga µ (x))ψ(x) = 0 [γ 0 = σ 1, γ 1 = iσ 2 ; γ 3 = γ 0 γ 1 = σ 3 ] { A 0 =0 i( x iga 1 (x))ψ L (x) i t ψ(x) = Hψ(x) iσ 3 ( x iga 1 (x)) ψ(x) = i( x iga 1 (x))ψ R (x) ψ(x + L) = ψ(x) x ) t-indep. gauge trf. ψ(x) = exp (ig dx A 1 (x) ψ(x) H ψ(x) = iσ 3 x ψ(x) with ψ(x) = e ipx with p = 2πn L A 1 (x) = 0 A 1 (x) = 0 0 ψ(x + L) = e ig R L 0 dx A1(x) ψ(x + L) = e iαl ψ(x) { H ψl (x) = +p + α (n Z) ψ(x) H ψ R (x) = p ψ(x) E=0 L R L R L R phaleron decoupling and E hase transitio 9/45

10 2.2 fate of false vacuum T = 0: Callan-Coleman, Phys. Rev. D16 ('77); Coleman, The Uses of Instantons T 0: Affleck, Phys. Rev. Lett. 46 ('81) V(x) x metastable min. = false vacuum T = 0 : Γ 2 h ImE 0 ( ) 1/2 Scl e Scl/ h [1 + O( h)] 2π h E 0 = false vacuum localize S cl = bounce Euclid phaleron decoupling and E hase transitio 10/45

11 T 0 (harmonic osc. at x 0 ) 1 2 hω 0, T V 0 Γ(T ) 0 de e E/T Z 0 Γ(E), x 1 V(x) mω 02 =V (x 0 ) mω 2 = V (0) V 0 E x 0 x 2 O x 3 metastable min. = false vacuum x Z 0 = e hω0(n+1/2)/t = n=0 ( 2 sinh hω ) 1 0, Γ(E) = i h 2T 2m (ψ Eψ E ψeψ E ) T < hω 2π : T > hω 2π : Γ Im F Z 1 0 2π ht 2 h (E 0 ) 1/2 e S[x b]/ h Γ ω β π Im F Z 1 0 ω 4π sin(β hω /2) e βv 0 { xb (t) = bounce solution T (E) = period of the bounce phaleron decoupling and E hase transitio 11/45

12 SU(2) [Arnold and McLerran, Phys. Rev. D36 ('87)] broken phase WKB approx. of ImF (T ) Γ (b) sph (T ) k N tr N rot ω 2π ( αw (T )T 4π ) 3 e E sph/t zero modes: N tr = 26, N rot = for λ = g 2 negative mode: ω 2 ( )m 2 W for 10 2 λ/g 2 10 symmetric phase Γ (s) sph (T ) κ(α W T ) 4 k O(1) MC simulation N CS (t)n CS (0) N CS 2 + Ae ΓV t κ = 1.09 ± 0.04 SU(2) pure gauge [Ambjørn and Krasnitz, P.L.B362('95)] phaleron decoupling and E hase transitio 12/45

13 2.3 H(t) < Γ(T ) = g k B = 1 f = F d 3 V = ±g T p [ ] (2π) log 1 e (ϵ p µ)/t 3 d 3 p ϵ p ϵ = g (2π) 3 e (ϵp µ)/t 1 d 3 p 1 n = g (2π) 3 e (ϵp µ)/t 1 s = f T ϵ p = p 2 + m 2, µ = phaleron decoupling and E hase transitio 13/45

14 f(= P ) ϵ n s (T m, µ) (T m) { } 1 π 2 g 7/8 90 T 4 { } ( ) 1 π 2 3/2 mt g 7/8 30 T 4 g m e (m µ)/t 2π { } ( ) 3/2 1 ζ(3) mt g 3/4 π T 3 g e (m µ)/t = ϵ 2 2π m { } 1 2π 2 g 7/8 45 T 3 m T m: n T 3 T m: kinetic equilibrium e m/t = phaleron decoupling and E hase transitio 14/45

15 t [T m] ( ) 1 = t λ : mean free path = σ = n(t ) g n ζ(3) π 2 T 3 σ λ = 1 n(t ) g n = B g B F g F σ λ m I T σ α2 s α2 T 2 (α = e2 4π ) s m I T... t = λ 10 gt 3 ( α 2 T 2 ) 1 = 10 gα 2 T phaleron decoupling and E hase transitio 15/45

16 H(T ) = 8πG 3 ρ(t ) 1.66 g T 2 m P ȷ g = m P = GeV H(T ) 1 t λ = 1 σn(t ) 1 α 2 T t (sym) sph 1 αw 4 T t (br) sph 1 αw 4 T ee sph/t m P 1.66 g T GeV 1 at T = 100GeV 1 10GeV 1 (strong EW int.) 10 3 GeV 1 T = T C 100GeV = SU(2) L U(1) Y Φ T 0 T > T C = t QCD < t EW < t (sym) sph H(T ) 1... T < T C = t QCD < t EW H(T ) 1... phaleron decoupling and E hase transitio 16/45

17 log t Hubble sphaleron electroweak GeV GeV T c log a ~ log(t 1 ) v(t C ) 200 T dec < T < T C = t (br) sph > H(T ) 1 T dec phaleron decoupling and E hase transitio 17/45

18 B (B L) [ ] Q i [H, Q i ] = 0 Z(T, µ) Tr e (H P i µ iq i )/T Q i (T, µ) = T µ i log Z(T, µ) Q i µ i LFV : Q i = B/N f L i, unbroken gauge charge Z(T, µ) (... ) [Khebnikov & Shaposhnikov, Phys. Lett. B387 ('96); Laine & Shaposhnikov, Phys. Rev. D61 ('00) ] µ Q i µ µ µ A + µ B = µ C phaleron decoupling and E hase transitio 18/45

19 massless free-field approximation N = n n = m T µ T d 3 [ ] k 1 (2π) 3 e (ω k µ)/t 1 1 e (ω k+µ)/t 1 T 3 [ x 2 dx 2π 2 0 e x µ/t 1 x 2 ] e x+µ/t 1 T 3 3 µ T, (bosons) T 3 6 µ T, (fermions) cf. s = 2π2 45 g T 3 N s µ T [Dreiner & Ross, Nucl. Phys. B410 ('93)] phaleron decoupling and E hase transitio 19/45

20 Quantum number densities in terms of µ [Harvey & Turner, Phys. Rev. D42 ('90)] N N H Higgs doublets (ϕ 0 ϕ ) W u L(R) d L(R) e il(r) ν il ϕ 0 ϕ µ W µ ul(r) µ dl(r) µ il(r) µ i µ 0 µ (3N + 7) µ s W ϕ 0, color, charge neutrality µ gluon = µ Z,γ = 0 quark mixing, LFV { gauge: µw = µ dl µ ul = µ il µ i = µ + µ 0 N + 2 Yukawa: µ 0 = µ ur µ ul = µ dl µ dr = µ il µ ir N N + 7 2(N + 2) = N + 3 µ : (µ W, µ 0, µ ul, µ i ) sphaleron process : 0 i (u L d L d L ν L ) i N(µ ul + 2µ dl ) + i µ i = 0 phaleron decoupling and E hase transitio 20/45

21 [T 2 /6 ] B = N(µ ul + µ ur + µ dl + µ dr ) = 4Nµ ul + 2Nµ W, L = i (µ i + µ il + µ ir ) = 3µ + 2Nµ W Nµ 0 Q = 2 3 N(µ u L + µ ur ) N(µ d L + µ dr ) 3 i (µ il + µ ir ) 2 2µ W 2N H µ = 2Nµ ul 2µ (4N N H )µ W + (4N + 2N H )µ 0 I 3 = 1 2 N(µ u L µ dl ) i (µ i µ il ) 2 2µ W N H(µ 0 + µ ) = (2N + N H + 4)µ W µ i µ i phaleron decoupling and E hase transitio 21/45

22 T > T C (symmetric phase) Q = I 3 = 0 (µ W = 0) B = 8N + 4N H 22N + 13N H (B L), L = 14N + 9N H 22N + 13N H (B L) T < T C (broken phase) Q = 0 and µ 0 = 0 (... ϕ 0 condensates) B = 8N + 4(N H + 2) 24N + 13(N H + 2) (B L), L = 16N + 9(N H + 2) 24N + 13(N H + 2) (B L) (B L) primordial = 0 B = L = 0... (i) (ii) B L 0 B + L phaleron decoupling and E hase transitio 22/45

23 T = 100GeV, t EW 10GeV 1 H(T ) GeV 1 (M) Φ(x) = v F (M; T ) = a(t )M 2 + b(t )M 4 Effective potential V eff (v; T ) T = 0 Φ = v V eff (v) v [Coleman, Secret Symmetry] V eff (v) = Γ[φ(x) = v]/ d 4 x Γ[φ] = generating functional of 1PI vertex functions phaleron decoupling and E hase transitio 23/45

24 Effective potential = V eff (v; T ) = 1 V T log Z = 1 V T log Tr [ e H/T ] Φ =v v at T path integral: Tr(e H/T ) = N(T ) pbc ( [dϕ] exp [0, 1/T ] Tr 1/T 0 ) d 4 x E L E (ϕ) { ϕ(0, x) = ϕ(1/t, x) boson ψ(0, x) = ψ(1/t, x) fermion Fourier mode k 0 = iω n with ω n = { 2nπT (boson) (2n + 1)πT (fermion) phaleron decoupling and E hase transitio 24/45

25 V eff (v;t) V eff (0;T) T > T C > 0 T > T C > 0 v C v 0 v v 0 v order parameter: Φ = 1 ( ) 0 2 v v(t) v(t)... 1st order EWPT v 0 T C T v 0 v C T C T v C lim T T C v(t ) 0 2nd order PT 1st order PT phaleron decoupling and E hase transitio 25/45

26 T = 0 Matsubara frequency ω n d 4 k V eff (v) V eff (v; T ) by (4π) i d 3 k 4 β (2π) 3( ) n= 1-loop effective potentail i β n d 3 k (2π) 3 log(k2 m 2 ) = = d 4 k (4π) 4 log(k2 m 2 )± 2i β d 4 k (4π) 4 log(k2 m 2 )± it 4 π 2 0 k 0 =iω n d 3 ) k k (1 (2π) log e β 2 +m 2 3 x dx x 2 log (1 e 2 +(m/t ) 2) T = 0-contribution T = 0 counterterm T = 0 counterterm phaleron decoupling and E hase transitio 26/45

27 1-loop W Z V eff (φ; T ) = 1 2 µ2 φ 2 + λ ( ) φ 4 φ4 + 2Bv0φ Bφ [log 4 2 v ] + V (φ; T ) where B = 3 64π 2 v0 4 (2m 4 W + m 4 Z 4m 4 t), V (φ; T ) = T 4 I B,F (a) 2π [6I B(a 2 W ) + 3I B (a Z ) 6I F (a t )], (a A = m A (φ)/t ) ) x dx x 2 log (1 e 2 +a 2. 0 high-temperature expansion [m/t << 1] γ E = I B (a) = π4 45 +π2 12 a2 π ( 6 (a2 ) 3/2 a4 a 16 log 2 4π a4 γ E 3 ) + O(a 6 ) 16 4 ( I F (a) = 7π4 360 π2 24 a2 a4 a 16 log 2 π a4 γ E 3 ) + O(a 6 ) 16 4 phaleron decoupling and E hase transitio 27/45

28 T > m W, m Z, m t where V eff (φ; T ) D(T 2 T 2 0 )φ 2 E T φ 3 + λ T 4 φ4 D = 1 8v0 2 (2m 2 W + m 2 Z + 2m 2 t), E = 1 λ T = λ 3 16π 2 v 4 0 T 2 0 = 1 2D (µ2 4Bv 2 0), 4πv0 3 (2m 3 W + m 3 Z) 10 2 ( 2m 4 W log m2 W α B T + 2 m4 Z log m2 Z α B T 2 4m4 t log log α F (B) = 2 log (4)π 2γ E ) m2 t α F T 2 T C φ = 0 φ C : φ C = 2E T C λ TC Γ (br) sph < H(T C) φ C T C > 1 = λ [m H = 2λv 0 ] m h < 46GeV = m SM h > 114GeV by LEPII phaleron decoupling and E hase transitio 28/45

29 Monte Carlo simulations effective fermion mass : m f (T ) O(T ) ω n = (2n + 1)πT πt... { scalar fields: ϕ(x) (site) gauge fields: U µ (x) Z = [dϕ du µ ] exp { S E [ϕ, U µ ]} 3-dim. SU(2) system with a Higgs doublet and a triplet time-component of U µ [Laine & Rummukainen, hep-lat/ ] 4-dim. SU(2) system with a Higgs doublet Em h < 66.5 ± 1.4GeV [Csikor, hep-lat/ ] end-point m h = { 72.3 ± 0.7 GeV 72.1 ± 1.4 GeV no PT (cross-over) in the Standard Model phaleron decoupling and E hase transitio 29/45

30 Sphaleron decoupling condition broken phase beyond one-loop order [Arnold and McLerran, Phys. Rev. D36 ('87)] 1 db B dt 13N f ω 128π 2 αw 3 κn tr N rot e E sph/t H(T ) = 1.66 g T 2 /m P E sph 4πv g 2 E v T > E [ ( ) ω log(κn tr N rot ) + log m W 2 log ( T )] 100GeV E = 2.00, N tr N rot = 80.13, ω 2 = 2.3m 2 W ( at λ/g2 2 = 1), κ = 1, T = 100GeV, v T > ( ) = 1.20 main, zero modes 10% phaleron decoupling and E hase transitio 30/45

31 MSSM (Minimal Supersymmetric Standard Model) [ + 1 Higgs doublet] + superpartners { Supersymmetric Yukawa int. ( superpotential) gauge anomaly cancellation 2HDM (two-higgs-doublet Model) [ + 1 Higgs doublet], Φ 1, Φ 2 Yukawa int. or Higgs doublet Higgs potential variation NMSSM (Next-to-Minimal Supersymmetric Standard Model) MSSM + 1 Singlet Superfield [KF, Tao and Toyoda, Prog. Theor. Phys. 114 ('05)] phaleron decoupling and E hase transitio 31/45

32 Higgs potential (tree level) MSSM: superpotential W = f (e) AB H dl A E B + f (d) AB H dq A D B f (u) AB H uq A U B µh d H u V 0 = m 2 1Φ d Φ d + m 2 2Φ uφ u ( m 2 3Φ d Φ u + h.c. ) + g2 2 + g soft-susy-br. terms ( Φ d Φ d Φ uφ u ) 2 + g D-term potential Φ d Φ u 2 2HDM: gauge-inv. renormalizable potential V 0 = m 2 1Φ 1 Φ 1 + m 2 2Φ 2 Φ 2 + (m 2 3Φ 1 Φ 2 + h.c.) λ 1(Φ 1 Φ 1) λ 2(Φ 2 Φ 2) 2 + λ 3 (Φ 1 Φ 1)(Φ 2 Φ 2) λ 4 (Φ 1 Φ 2)(Φ 2 Φ 1) { 1 2 λ 5(Φ 1 Φ 2) 2 + [ λ 6 (Φ 1 Φ 1) + λ 7 (Φ 2 Φ 2) ] } (Φ 1 Φ 2) + h.c. 2HDM MSSM by Φ 1 Φ d, Φ 2 Φ u, λ 1 = λ 2 = λ 3 = g2 2 + g1 2, λ 4 = g , λ 5,6,7 = 0 phaleron decoupling and E hase transitio 32/45

33 Higgs particles in the MSSM (tree level) Φ d, Φ u : NG modes = 5 = 3 (neutral) + 2 (H ± ) V 0 V 0 = min at Φ d = 1 ( ) v0 cos β, Φ 2 0 u = 1 ( 0 2 v 0 sin β ) m 2 1 = m 2 3 tan β 1 2 m2 Z cos(2β), m 2 2 = m 2 3 cot β m2 Z cos(2β) Φ d,u m 2 3 V 0 Higgs fields mass matrix of the Higgs particles m 2 m 2 3 A = m 2 h,h = 1 2 sin β cos β [ m 2 Z + m 2 A ] (m 2 Z + m2 A )2 4m 2 Z m2 A cos2 (2β) CP-odd CP-even m 2 H ± = m 2 W + m 2 A phaleron decoupling and E hase transitio 33/45

34 ϕ 4 g2, 1 g1 2 m h min { m 2 Z, ma} 2, mh max { } m 2 Z, m 2 A new upper bound on m h : m 2 h m 2 Z cos 2 (2β) + 3 2π 2 m 4 t v 2 0 [Okada, Yamaguchi and Yanagida, Prog. Theor. Phys. 85 ('91)] log ( m 2 t + m2 t m 2 t ) h-h mixing ZZh-coupling e Z Z e + h phaleron decoupling and E hase transitio 34/45

35 allowed region for the lightest neutral Higgs boson allowed region for the pseudoscalar Higgs boson m t = GeV tan 10 (b) m h -max 99.7%CL Excluded by LEP 95%CL tanβ µ<0 no mixing m h - max D CDF Tevatron Preliminary ττ 95% CL Exclusion D (1.0 fb -1 ) CDF (1.8 fb -1 ) 1 Theoretically Inaccessible m h (GeV/c 2 ) 0 LEP 2 no mixing m A (GeV/c 2 ) m h -max benchmark scenario [PDG: C. Amsler et al., Phys. Lett. B667, 1 (2008)] phaleron decoupling and E hase transitio 35/45

36 MSSM EWPT order parameter: Φ d = 1 2 ( v1 0 ), Φ u = 1 2 ( 0 v 2 + iv 3 V eff (v; T ) v = (v 1, v 2, v 3 ) (at each T ) symmetric under Φ 1 Φ 2 ) ( ) = eiθ 0 2 v u m 1 = m 2 = m 3 = 0 (tan 4 β = λ 1 /λ 2 ) [KF, Kakuto, Takenaga, Prog. Theor. Phys. 91] Higgs mass 2 matrix: M 2 ij 2 V eff (T = 0) ϕ i ϕ j = Γ (2) 1PI (p = 0) { mhi g ZZHi phaleron decoupling and E hase transitio 36/45

37 V eff (v; T = 0) = V 0 (v) π 2 m 2 a: field (Φ d, Φ u )-dependent mass 2, : a = t, t, b, b, W, Z, [Carena, Ellis, Pilaftsis and Wagner, Nucl. Phys. B586 ('00)] a c a ( m 2 a) 2 ( log m2 a M c a : ) field parametrization VEV + fluctuation ( 1 ) ( 2 (v d + h d + ia d ) Φ d =, Φ u = e iθ ϕ d 1 ϕ + u 2 (v u + h u + ia u ) ) = V eff v d = v 0 cos β, v u = v 0 sin β, θ soft mass 0 = 1 Veff = m 2 1 Re(m 2 v d h 3e iθ )tan β + 1 d 2 m2 Zcos(2β) +, 0 = 1 Veff = m 2 2 Re(m 2 v u h 3e iθ )cot β 1 u 2 m2 Zcos(2β) +, 0 = 1 Veff = 1 Veff = Im(m 2 v u a d v d a 3e iθ ) +. u phaleron decoupling and E hase transitio 37/45

38 0 neutral Higgs boson charged Higgs bosonmass: M 2 = m 2 H ± = 2 Veff h 2 d 2 Veff h d h u 2 Veff h d a u 1 cos β 1 sin β cos β 2 Veff 2 V eff ϕ + d ϕ u h d h u 2 Veff h 2 u 1 2 Veff sin β h u a d input m 2 H ± Re(m 2 3e iθ ) = 1 cos β 1 sin β 1 sin β cos β [NG mode ] 2 Veff h d a u 2 Veff h u a d 2 Veff a d a u 1 sin β cos β Re(m2 3e iθ ) + m 2 W + mass eigenstates H i h d h u = O a H 1 H 2 H 3, O T M 2 O = diag(m 2 H 1, m 2 H 2, m 2 H 3 ) phaleron decoupling and E hase transitio 38/45

39 gauge and Yukawa interactions ( L gauge g 2 m W g V V Hi W µ + W µ + Z µz µ ) H 2 cos 2 i + θ W g ( 2 g ZHi H 2 cos θ j Z µ ) H i µh j W L Y g 2m b 2m W b(g S bbhi + iγ 5 g P bbh i )b H i corrections to the couplings [ : g V V H = 1, g ZHH = 0, g bbh = 1] g V V Hi = O 1i cos β + O 2i sin β g ZHi H j = 1 2 [(O 3iO 1j O 3j O 1i ) sin β + (O 3i O 2j O 3j O 2i ) cos β] g S bbh i = O 1i 1 cos β, gp bbh i = O 3i tan β, g 2 bbh i = ( g S bbh i ) 2 + ( g P bbhi ) 2 v 0 = 246GeV, tan β, m H ± µ, A q, scalar soft mass, m 2 1, m 2 2, m 2 3 Higgs mass vs EWPT phaleron decoupling and E hase transitio 39/45

40 light stop scenario [de Carlos, Espinosa, Nucl. Phys. B503 ('97)] stop mass 2 matrix: M 2 t = m2 t L + ( ) g g2 2 8 (v 2 u v 2 d ) + y2 t 2 v 2 u y t 2 (µv d + A(v 2 iv 3 )) m 2 t R g2 1 6 (v 2 u v 2 d )+ y2 t 2 v 2 u m 2 t L = 0 or m 2 t R = 0 = smaller eigenvalue: m 2 t 1 O(v 2 )... V t(v; T ) T 6π (m2 t 1 ) 3/2 T v 3 stronger 1st order PT effective for larger y t smaller tan β m t = 1 2 y t v 0 sin β phaleron decoupling and E hase transitio 40/45

41 (CP-conserving case) tan β = 6, m h = 82.3GeV, m A = 118GeV, m t 1 = 168GeV T C = 93.4GeV, v C = 129GeV [KF, Prog. Theor. Phys. 101 ('99)] v v 1 2.0x x x x x x x x x x x v C / TC tanβ GeV m~ tr (GeV) m~ tr (GeV) m ~ t1 m A m h V eff (v 1, v 2, v 3 = 0; T C ) m tr -dependence (tan β = 6) phaleron decoupling and E hase transitio 41/45

42 Lattice MC studies 3d reduced model strong 1st order for m t 1 < m t and m h 110GeV [Laine et al. hep-lat/ ] 4d model with SU(3), SU(2) gauge bosons, 2 Higgs doublets, stops, sbottoms A t,b = 0, tan β 6 [Csikor, et al. hep-lat/ ] m h v /T =1 C C m A = 500 GeV v C /T C > 1 below the steeper lines max. m h = 103 ± 4 GeV for m t L 560 GeV phaleron decoupling and E hase transitio 42/45

43 (i) B L (ii) B + L (i) Leptogenesis, (B L)-nonconserving GUTs, Affleck-Dine (ii) Higgs Standard Model X MSSM with m t 1 m t, m h 105GeV 2HDM NMSSM phaleron decoupling and E hase transitio 43/45

44 Sphaleron decoupling condition revisited (preliminary) collaboration with E. Senaha T C T N ( ) 3/2 Γ N (T ) T 4 Ecb (T ) e E cb(t )/T 2πT [Linde, Nucl. Phys. B216 ('83)] E cb (T ) : critical bubble V eff (T ) V eff (T N ) v N v ϕ (r = 0) = 0 ϕ(r = ) = 0 v N 0 r phaleron decoupling and E hase transitio 44/45

45 T N (nucleation temp.) Γ N (T N )H(T N ) 3 = H(T N ) E cb(t N ) T N 3 2 log E cb(t N ) T N = log g (T N ) 4 log T N 100GeV T C = GeV, v C = GeV T N = 116.9GeV, v C = 117.9GeV v C v N = 0.86 = % T C T N sphaleron decoupling condition E sph (T ) V eff (T ) zero-mode factor in progress phaleron decoupling and E hase transitio 45/45

1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogen

1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogen 1/73 1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogenesis 6. Discussions Sphaleron process and Leptogenesis

More information

2/31

2/31 1/31 2/31 Friedmann-Robertson-Walker ( ) dr ds 2 = g µν (x)dx µ dx ν = dt 2 R0 2 a(t) 2 2 1 kr + 2 r2 (dθ 2 + sin 2 θdϕ 2 ) [Kolb & Turner, The Early Universe, etc.] (k = 0, ±1) Einstein eq. : R µν (x)

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

nakayama.key

nakayama.key 2017/11/1@Flavor Physics Workshop 2017 Contents CP 1932 10 4 p + p! p + p + p + p P. Blasi, 1311.7346 d d. 10 Gpc 10 0 Cohen, De Rujula, Glashow (1997) d B0 Flux [photons cm -2 s -1 MeV -1 sr -1

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

b.dvi

b.dvi , 0 1 2 1.1 [2, 3] : : : : : : : : : : : : : : : : 3 2, 6 2.1 : : : : : : : : : : : : : : : 7 2.2 : : : : : : : : : : : : : : : : : : : 15 2.3, : : : : 18 3 23 4 31 5 35 6 46 6.1 Borel. : : : : : : : :

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0 08 p. 8 4 k B log g() S() k B : Boltzmann T T S k B g g heat bath, thermal reservoir... 4. I II II System I System II II I I 0 + 0 const. (4 85) g( 0 ) g ( )g ( ) g ( )g ( 0 ) (4 86) g ( )g ( 0 ) 0 (4

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

[pb/gev] T d / dp Data/Theory 6 5.5 0.5 0 0 00 00 00 500 600 p [GeV] T anti-k jets, R=0.6, y jet L dt=7 nb ( s=7 TeV) Systematic Uncertainties.8 NLO-pQCD (CTEQ 6.6)+ Non pert. corr. 0 00 00 00 500 600

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information