1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogen

Size: px
Start display at page:

Download "1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogen"

Transcription

1 1/73

2 1. Introduction overview of baryogenesis. Anomalous Baryon Number Nonconservation 3. Sphaleron Process 4. Requirements for EW Baryogenesis 5. Leptogenesis 6. Discussions Sphaleron process and Leptogenesis /73

3 1. Introduction Baryon Asymmetry of the Universe n p n p M 10 1 M [Steigman, Ann. Rev. Astron. Astrophys. 14 ('76)] η n B n γ (95% CL) T < 1MeV Sphaleron process and Leptogenesis 3/73

4 n B s = ( ) s 7.04n γ at T < 1MeV B = 0 Sphaleron process and Leptogenesis 4/73

5 = (1) () C CP (3) B 0 ρ(t) ρ(t) = n p n ψ n (t) ψ n (t) O (t) = Tr [ ρ(t)o] ρ 0 n B 0 Tr [ρ 0 n B ] = 0 Sphaleron process and Leptogenesis 5/73

6 density operator ρ(t) i h ρ(t) t + [ρ(t), H] = 0 H ρ 0 H C CP = [ρ, C] = 0 or [ρ, CP] = 0 CBC 1 = B, CPB(CP) 1 = B B C B (ρ 0 ) H C CP n B n B = Tr[ρ n B ] = Tr[ρ Cn B C 1 ] = Tr[ρ n B ] = 0 or n B = Tr[ρ CPn B (CP) 1 ] = Tr[ρ n B ] = 0... n B = 0 C CP Sphaleron process and Leptogenesis 6/73

7 (1) tree-level global U(1) B -sym. SU(3) c SU() L U(1) Y q X µ l (squark) Affleck-Dine mechanism [Affleck & Dine, Nucl. Phys. B49 ('85); Dine, et al., Nucl. Phys. B458 ('96)] q Sphaleron process and Leptogenesis 7/73

8 (B + L) (chiral anomaly) [ = τ p > SU(5) (B + L) B 0 T = 0 ['t Hooft, Phys. Rev. D14 ('76)] Sphaleron process and Leptogenesis 8/73

9 () L g ( ψl γ µ A a µt a Lψ L + ψ R γ µ A a µt a Rψ R ) T a L T a R T a L = τ a and T a R = 0 and Y L Y R y AB q AL γ µ W µ q BL + h.c. (A B) strong CP phase ( θ QCD F µν F µν ) µ soft SUSY-breaking parameters µbφ d Φ u, Aϕ 3, Mχχ θ QCD 0 by nedm [Girardello & Grisaru, Nucl. Phys. B194 ('8)] Sphaleron process and Leptogenesis 9/73

10 (3) Γ B 0 H(T ) Sphaleron process and Leptogenesis 10/73

11 GUT Baryogenesis minimal SU(5) model: { 5 : ψ i matter: L d c R, l L 10 : χ [ij]l q L, u c R, ec R i = 1 5 (α = 1 3, a = 1, ) gauge: A µ = [Yoshimura, Phys. Rev. Lett. 41 ('78)] ( ) Gµ, B µ Xµ aα Xµ aα W µ, B µ L int g ψγ µ A µ ψ + gtr [ χγ µ {A µ, χ}] gxαµ a [ ε αβγū c Rγγ µ α q Lβa + ϵ ab ( q Lb γ µ e c R + l Lb γ µ d cα )] R X X B = 3 r 1 3 (1 r) 3 r+1 (1 r) = r r 3... C CP (r = r) = B = 0 B X qq r /3 X q l 1 r 1/3 X q q r /3 X q, l 1 r 1/3 Sphaleron process and Leptogenesis 11/73

12 B r r T m X X Γ D αm X (α 1/40) Γ D H(T = m X ) X X H(T ) 1.66 g T m Pl g : SU(5) model (B L) (B + L) (B + L) 0 B + L 0 (B + L) 0 B L 0 Leptogenesis: L 0 B = L Sphaleron process and Leptogenesis 1/73

13 . Anomalous Baryon Number Nonconservation B L µ j µ B+L = N f 16π [g Tr(F µν F µν ) g 1B µν Bµν ] µ j µ B L = 0 N f = F µν 1 ϵµνρσ F ρσ B(t f ) B(t i ) = N f 3π tf t i d 4 x [ g Tr(F µν F µν ) g 1B µν Bµν ] = N f [N CS (t f ) N CS (t i )] N CS Chern-Simons number: A 0 = 0-gauge N CS (t) = 1 3π d 3 x ϵ ijk [g Tr (F ij A k 3 ) g A i A j A k g 1B ] ij B k t Sphaleron process and Leptogenesis 13/73

14 : E = 1 (E + B ) = 0 F µν = B µν = 0 A µ = iu 1 µ U, B µ = µ v with U SU() U(x) : S 3 U SU() S 3 π 3 (S 3 ) Z = U(x) N CS ig 3 d 3 x ϵ 48π ijk Tr[U 1 i U U 1 j U U 1 k U] winding number U(1) axial U(1) anomaly axial fermion Q 5 = N CS (t) = g 4π g π tf dt dx ϵ µν F µν = N CS (t f ) N CS (t i ), t i dx A 1 (t, x). : A 1 (x) = 1 g xα(x) with α( ) α( ) = πn... N CS = N Sphaleron process and Leptogenesis 14/73

15 E N CS { B 0 e S instanton = e 8π /g e e E sph/t E sph = Sphaleron T > T C (B + L) 0 Sphaleron process and Leptogenesis 15/73

16 N CS [Atiyah and Singer, 1968] n R n L = ν = g 16π d 4 xtr(f µν F µν ) (chiral fermions) = Pontrjagin index = instanton number ψ L E ψ R E [Ambjørn, et al. Nucl. Phys. B1 ('83)] p ǫ µν F µν 0 p vacuum particle production Sphaleron process and Leptogenesis 16/73

17 (1 + 1) Dirac eq. iγ µ ( µ iga µ (x))ψ(x) = 0 [γ 0 = σ 1, γ 1 = iσ ; γ 3 = γ 0 γ 1 = σ 3 ] { A 0 =0 i( x iga 1 (x))ψ L (x) i t ψ(x) = Hψ(x) iσ 3 ( x iga 1 (x)) ψ(x) = i( x iga 1 (x))ψ R (x) ψ(x + L) = ψ(x) x ) t-indep. gauge trf. ψ(x) = exp (ig dx A 1 (x) ψ(x) H ψ(x) = iσ 3 x ψ(x) with ψ(x) = e ipx with p = πn L A 1 (x) = 0 A 1 (x) = 0 0 ψ(x + L) = e ig R L 0 dx A1(x) ψ(x + L) = e iαl ψ(x) { H ψl (x) = +p + α (n Z) ψ(x) H ψ R (x) = p ψ(x) E=0 α π L : L R L R L R Sphaleron process and Leptogenesis 17/73

18 3. Sphaleron Process Sphaleron σφαλϵρos = ready-to-fall, deceitful [cf. a sphalt] [Klinkhamer and Manton, Phys. Rev. D30 ('84)] 4-dim. SU() gauge + 1-doublet Higgs -dim. U(1) gauge-higgs model -dim. O(3) nonlinear sigma model -Higgs-Doublet Model MSSM with V eff (T ) Next-to-MSSM [Klinkhamer and Manton, Phys. Rev. D30 ('84)] [Bocharev and Shaposhnikov, Mod. Phys. Lett. A ('87)] [Mottola and Wipf, Phys. Rev. D39 ('89)] [Kastening, Peccei and Zhang, Phys. Lett. B66 ('91)] [Moreno, Oaknin and Quiros, Nucl. Phys. B483 ('97)] [KF and Senaha, hep-ph/0905.0] [KF, Kakuto, Tao and Toyoda, Prog. Theor. Phys. 114 ('05)] Sphaleron process and Leptogenesis 18/73

19 (saddle point) = least-energy path maximum-energy configuration Energy vacuum configuration space N CS =1 vacuum N CS =0 least-energy path/gauge trf. = noncontractible loop highest symmetry config. [Manton, Phys. Rev. D8 ('83)] Sphaleron process and Leptogenesis 19/73

20 [1/volume/time] SU() broken phase WKB approx. of ImF (T ) ( Γ (b) sph (T ) k N ω αw (T )T tr N rot π 4π [Arnold and McLerran, Phys. Rev. D36 ('87)] ) 3 e E sph/t zero modes: N tr = 6, N rot = for λ = g negative mode: ω ( )m W for 10 λ/g 10 symmetric phase Γ (s) sph (T ) κ(α W T ) 4 k O(1) MC simulation N CS (t)n CS (0) N CS + Ae ΓV t κ = 1.09 ± 0.04 SU() pure gauge [Ambjørn and Krasnitz, P.L.B36('95)] Sphaleron process and Leptogenesis 0/73

21 H(t) < Γ(T ) = g k B = 1 f = F d 3 V = ±g T p [ ] (π) log 1 e (ϵ p µ)/t 3 d 3 p ϵ p ϵ = g (π) 3 e (ϵp µ)/t 1 d 3 p 1 n = g (π) 3 e (ϵp µ)/t 1 s = f T ϵ p = p + m, µ = Sphaleron process and Leptogenesis 1/73

22 f(= P ) ϵ n s (T m, µ) (T m) { } 1 π g 7/8 90 T 4 { } ( ) 1 π 3/ mt g 7/8 30 T 4 g m e (m µ)/t π { } ( ) 3/ 1 ζ(3) mt g 3/4 π T 3 g e (m µ)/t = ϵ π m { } 1 π g 7/8 45 T 3 m T m: n T 3 T m: kinetic equilibrium e m/t = Sphaleron process and Leptogenesis /73

23 t [T m] ( ) 1 = t λ : mean free path = σ = n(t ) g n ζ(3) π T 3 σ λ = 1 n(t ) g n = B g B F g F σ λ m I T σ α s α T (α = e 4π ) s m I T... t = λ 10 gt 3 ( α T ) 1 = 10 gα T Sphaleron process and Leptogenesis 3/73

24 H(T ) = 8πG 3 ρ(t ) 1.66 g T m P ȷ g = m P = GeV H(T ) 1 t λ = 1 σn(t ) 1 α T t (sym) sph 1 αw 4 T t (br) sph 1 αw 4 T ee sph/t m P 1.66 g T GeV 1 at T = 100GeV 1 10GeV 1 (strong EW int.) 10 3 GeV 1 T = T C 100GeV = SU() L U(1) Y Φ T 0 T > T C = t QCD < t EW < t (sym) sph H(T ) 1... T < T C = t QCD < t EW H(T ) 1... Sphaleron process and Leptogenesis 4/73

25 log t Hubble sphaleron electroweak GeV 10 1 GeV T c log a ~ log(t 1 ) v(t C ) 00 T dec < T < T C = t (br) sph > H(T ) 1 T dec Sphaleron process and Leptogenesis 5/73

26 B (B L) [ ] Q i [H, Q i ] = 0 Z(T, µ) Tr e (H P i µ iq i )/T Q i (T, µ) = T µ i log Z(T, µ) Q i µ i LFV : Q i = B/N f L i, unbroken gauge charge Z(T, µ) (... ) [Khebnikov & Shaposhnikov, Phys. Lett. B387 ('96); Laine & Shaposhnikov, Phys. Rev. D61 ('00) ] µ Q i µ µ µ A + µ B = µ C Sphaleron process and Leptogenesis 6/73

27 massless free-field approximation N = n n = m T µ T d 3 [ ] k 1 (π) 3 e (ω k µ)/t 1 1 e (ω k+µ)/t 1 T 3 [ x dx π 0 e x µ/t 1 x ] e x+µ/t 1 T 3 3 µ T, (bosons) T 3 6 µ T, (fermions) cf. s = π 45 g T 3 N s µ T [Dreiner & Ross, Nucl. Phys. B410 ('93)] Sphaleron process and Leptogenesis 7/73

28 µ [Harvey & Turner, Phys. Rev. D4 ('90)] N N H Higgs doublets (ϕ 0 ϕ ) W u L(R) d L(R) e il(r) ν il ϕ 0 ϕ µ W µ ul(r) µ dl(r) µ il(r) µ i µ 0 µ (3N + 7) µ s W ϕ 0, color, charge neutrality µ gluon = µ Z,γ = 0 quark mixing, LFV { gauge: µw = µ dl µ ul = µ il µ i = µ + µ 0 N + Yukawa: µ 0 = µ ur µ ul = µ dl µ dr = µ il µ ir N N + 7 (N + ) = N + 3 µ : (µ W, µ 0, µ ul, µ i ) sphaleron process : 0 i (u L d L d L ν L ) i N(µ ul + µ dl ) + i µ i = 0 Sphaleron process and Leptogenesis 8/73

29 [T /6 ] B = N(µ ul + µ ur + µ dl + µ dr ) = 4Nµ ul + Nµ W, L = i (µ i + µ il + µ ir ) = 3µ + Nµ W Nµ 0 Q = 3 N(µ u L + µ ur ) N(µ d L + µ dr ) 3 i (µ il + µ ir ) µ W N H µ = Nµ ul µ (4N N H )µ W + (4N + N H )µ 0 I 3 = 1 N(µ u L µ dl ) i (µ i µ il ) µ W 1 N H(µ 0 + µ ) = (N + N H + 4)µ W µ i µ i Sphaleron process and Leptogenesis 9/73

30 T > T C (symmetric phase) Q = I 3 = 0 (µ W = 0) B = 8N + 4N H N + 13N H (B L), L = 14N + 9N H N + 13N H (B L) T < T C (broken phase) Q = 0 and µ 0 = 0 (... ϕ 0 condensates) B = 8N + 4(N H + ) 4N + 13(N H + ) (B L), L = 16N + 9(N H + ) 4N + 13(N H + ) (B L) (B L) primordial = 0 B = L = 0... (i) (ii) B L 0 B + L Sphaleron process and Leptogenesis 30/73

31 4. Requirements for EW Baryogenesis (1) = ( (B + L) 0) () = SUSY-SM, extra Higgs, (3) t EW = 10GeV < t (sym) sph = 103 GeV H(T ) 1 = GeV at T 100GeV = Sphaleron process and Leptogenesis 31/73

32 B 0 B = 0 v v C s T R L B = 0, broken phase s T R R v w s R R L symmetric phase B 0 ψ R v co z bubble wall (= Higgs + gauge config.) B-conserving ψ L ψ R chiral charge (Q L Q R ) flux (Q L Q R ) (RR L s RL R) s µ B 0 ṅ B = µ B T Γ(s) sph = Sphaleron process and Leptogenesis 3/73

33 m h > 114GeV (LEPII) = q W U m j U q m i m j O(α W ) [Farrar and Shaposhnikov, Phys. Rev. D50 ('94)] Weak int. QCD correction (short range) decoherence bubble wall n B < 10 6 s [Gavela, et al., Nucl. Phys. B430 ('94)] [Huet and Sather, Phys. Rev. D51 ('95)] 1st-order EWPT & CP violtion Sphaleron process and Leptogenesis 33/73

34 boson loop V eff (v; T ) T ( m(v) ) 3/ Higgs boson boson m(v) g v (for v 0) HDM, SUSY-SM sfermion [light stop m t 1 < m t ] m(v) = m 0 + g v (m 0 g v0) NMSSM [KF, Tao and Toyoda, PTP 114 ('05)] sphaleron decoupling condition scalar self-interaction complex parameters λ 6,7 in HDM, µb, A in SUSY-SM complex Majorama mass gaugino, Higgsino soft masses in SUSY-SM complex T C Sphaleron process and Leptogenesis 34/73

35 { I. chiaral charge flux II. diffusion equation I. chiral charge flux diffusion eq. source term (i / m(x)) ψ(x) = 0 m(x) = CP-violating wave equation { y ϕ(x) = y v(x)e iθ(x) ϕ(x) mass matrix [SUSY] [Nelson, et al, Nucl. Phys. B373 ('9); KF, et al, Prog. Theor. Phys. 95 ('96)] expansion w.r.t. Im m(x) [KF, et al, Phys. Rev. D50 ('94)] expansion w.r.t. m(x) [Huet and Nelson, Phys. Lett. B355 ('95); Phys. Rev. D53 ('96)] derivative expansion [Carena, et al., Nucl. Phys. B503 ('97)] Nonequilibrium field theory Closed-Time-Path formalism [Riotto, Phys. Rev. D53 ('96): Kainulainen, et al., JHEP 06 ('01); Phys. Rev. D66 ('0)] Sphaleron process and Leptogenesis 35/73

36 II. diffusion equation symmetric phase Q i Q i (t, x) = D Qi Q i j Γ ij c j Q j + [source term] D Q : Q diffusion const. mean-free path Γ ij : Q i c i [Cohen, Kaplan, Nelson, Phys. Lett. B336 ('94); Joyce, Prokopec, Turok, Phys. Rev. D53 ('96)] ( Q(t, x) = 0) (Γ 0) D Q Sphaleron process and Leptogenesis 36/73

37 {u L, d L, u R, d R, ν L, e L, e R, ϕ 0, ϕ, W, Z} B = L = 0 Y µ B Q a = {B L, Y, I 3, B} µ B L, µ Y, µ I3, µ B : n i = T 6 k iµ i = T 6 k { i qi a ki = 1(Weyl fermion) µ Q a k i = (complex boson) a q a i = i Qa n ul (d L ) = T ( µ B µ B L µ Y + ( ) 1 ) µ I 3, n ur = T ( µ B µ B L + ) 3 µ Y, n dr = T ( µ B µ B L 1 ) 3 µ Y, n νl (e L ) = T ( µ B L 1 6 µ Y + ( ) 1 ) µ I3, n er = T 6 ( µ B L µ Y ), n ϕ 0 (ϕ ) = T ( 1 3 µ Y + ( ) 1 ) µ I3, n W = T 3 ( µ I 3 ). Sphaleron process and Leptogenesis 37/73

38 Q a : Q a = i q a i n i = T 6 k i qi a qi b µ Qb i,b µ Y = µ I3 B = ( ) T color nul + n dl + n ur + n dr = 6 ( 4 3 (µ B + µ B L ) + ) 3 µ Y, B L = B T 6 ( 3µ B L µ Y ), [ 1 Y = 3 6 (n u L + n dl ) + 3 n u R 1 ] 3 n d R 1 (n ν L + n el ) n er m (n ϕ 0 + n ϕ ) = T [ 6 3 µ B + 8 ( ) ] 10 3 µ B L m µ Y (m = ) B = L = 0 µ B L = 3 µ Y, µ B = 1 6 µ Y Y = T 6 ( m + 5 ) µ Y 3... µ B = Y (m + 5/3)T Sphaleron process and Leptogenesis 38/73

39 n B = 3 Γ sph T dt µ B = 3 Γ sph (m + 5/3)T 3 z/vw dt ρ Y (z v w t) v w ρ Y (z): z Y = z Y ρ Y (z) v w O z z v w t z z/vw dt ρ Y (z v w t) = 1 v w 0 dzρ Y (z) F Y τ v w (F Y = injected flux) τ : diffusion length Sphaleron process and Leptogenesis 39/73

40 BAU: n B s 3N 100 π g κα 4 W F Y v w T 3 τt N O(1), τ m.f.p. τt { 1 for quarks for leptons MC simulation = forward scattering enhanced : for top quark τt max. at v w 1/ 3 for this optimal case n B s 10 3 F Y v w T 3 F Y v w T 3 O(10 7 ) = Sphaleron process and Leptogenesis 40/73

41 toy model m(z) = m tanh(az) exp ( iπ 1 tanh(az) ) no CP violation in the broken phase [z ] R R s R L R s R L [KF et al., Phys. Rev. D50 ('94); Prog. Theor. Phys. 95 ('96)] wall width wave length of the carrier R O(1) R a=1 a= 0.5 m =1 0 a= p L /m 0 Sphaleron process and Leptogenesis 41/73

42 chiral charge flux F Q T 3 (Q L Q R ) [dimensionless] at T = 100GeV log (m /T) v = 0.1 w log (a/t) log (m /T) v = 0.58 w log (a/t) log (m /T) v = 0.9 w log (a/t) n B s 3 N 100 π g κα 4 W F Y optimal τt 10 3 v w T 3 F Y v w T 3 O(1) Sphaleron process and Leptogenesis 4/73

43 5. Leptogenesis 5.1 Seesaw mechanism 5. CP violation in N R -decay 5.3 Calculation of generated lepton number review articles Buchmüller, Di Bari and Plümacher, Ann. Phys. 315 ( 05) Buchmüller, Peccei and Yanagida, Ann. Rev. Nucl. Part. Sci. 55 ( 05) [hep-ph/050169] Buchmüller, hep-ph/ Sphaleron process and Leptogenesis 43/73

44 5.1 Seesaw mechanism Minimal SM + singlet N R (-spinor notation) L Y = y ij ϵ ab l ail e c jrφ b h ij ϵ ab l ail N c jr Φ b 1 M ijn c irn c jr + h.c. SU() doublets: l L = ( νl e L ), Φ = ( ) ϕ 0, Φ = iτ Φ = ϕ ( ) ϕ + ϕ 0 y h M N f N f h 0 M 0 = L-violation T = 0 vacuum: Φ = ( ) 0 v 0 / L Y y ijv 0 e il e c jr h ijv 0 ν il N c ir 1 M ijn c irn c jr + h.c. = e T Lm e e c R ν T Lm ν N c R 1 N c T R MN c R + h.c. Sphaleron process and Leptogenesis 44/73

45 m e m ν U (e) L m eu (e) R = diag(m e, m µ, m τ ), S L m ν S R = Λ D = diagonal e c R = U (e) R e c R, M = S T R MS R e L = U (e)t L e L, N c R = S R N c R, ν L = S T Lν L V = L m = m i e e T il e c ir 1 ( ν T L N ct R ) ( 0 Λ D Λ D M ) ( ν L N c R ) + h.c. ( ) 1 1 Λ D M M 1 V V = 1 + O(Λ D Λ D 1 M ) ( ) ( ) V T 0 ΛD ΛD M V 1 Λ D 0 M 0 M Λ D T T L (Λ D M 1 Λ D )T L = Λ l, T T R MT R = Λ h L ν m = 1 ( ν T L N ct R ( ) ( ) ( ) V T L 0 Λl 0 T ) 0 TR L 0 0 Λ h 0 T R V ( ν L N c R ) + h.c. Sphaleron process and Leptogenesis 45/73

46 mass eigenstates : { ηll = T [ L ν L Λ D ( M ] 1 ) N R c η hl = T [ R N c R + ( M ] 1 ) Λ D ν L L CC g [ē L σ µ ν L + ν L σ µ ē L ] Wµ + h.c. g [ ] ē L σ µ (U (e) L ST LT L )η ll + η ll σ µ (TL T S L U (e) L )ē L Wµ + h.c. (U MNS ) fi = ( ) U (e) L ST L T L fi f =lepton flavor, i =mass eigenstate 3 CP phases = { ΛD U MNS Sphaleron process and Leptogenesis 46/73

47 5. CP violation in N R -decay T > O(100)GeV symmetric phase gauge boson, lepton massless Higgs boson (ϕ 0, ϕ ) heavy neutrino N decay asymmetry { Γ(Ni e j ϕ+ ) = Γ(N i ν j ϕ 0 ) Γ(N i l j ϕ) SU() symmetry Γ(N i e + j ϕ ) = Γ(N i ν j ϕ 0 ) Γ(N i l j ϕ) partial decay asym. ε i j Γ(N i l j ϕ) Γ(N i l j ϕ) Γ(N i l j ϕ) + Γ(N i l j ϕ) total decay asym. ε i j Γ(N i l j ϕ) j Γ(N i l j ϕ) j Γ(N i l j ϕ) + j Γ(N i l j ϕ) Leptogenesis U MNS Sphaleron process and Leptogenesis 47/73

48 5.3 Calculation of generated lepton number [in comoving frame] dn ψ (t) dt + 3H(t)n ψ (t) = [γ(ψ i + j + ) γ(i + j + ψ)] i,j, [γ(ψ + a i + j + ) γ(i + j + ψ + a)] a,i,j, γ γ(ψ + a + b + i + j + ) = d p ψ d p a d p j (π) 4 δ 4 (p ψ + p a + p i p j ) M(ψ + a + b + i + j + ) f ψ f a f b (1 ± f i )(1 ± f j ) d p d3 p (π) 3 E p, f ψ (p, t) = ψ, ± = { boson fermion Sphaleron process and Leptogenesis 48/73

49 n ψ (t) = d 3 p (π) 3 f ψ(p, t) = 0 f eq 1 ± f eq ψ eq eq (1 ± fi )(1 ± fj ) = 1 e βe i e βej e βe ψ 1e βe i 1 e βe j 1 = e βe ψ γ(ψ i + j + ) γ(i + j + ψ) = 1 1 e βe ψ 1e βe i 1 e βe j 1 = f eq d p ψ d p i (π) 4 δ 4 (p ψ p i p j )f eq ψ [ M(ψ i + j + ) M(i + j + ψ) ] 1 e βe 1 = i f eq j eβe e βe 1 eq (1 ± fψ ) eq eq (1 ± fi )(1 ± fj ) Sphaleron process and Leptogenesis 49/73

50 unitarity: [Kolb and Wolfram, Appendix of Nucl. Phys. B17] i,j, M(ψ i + j + ) (1 ± f eq eq i )(1 ± fj ) = i,j, M(i + j + ψ) (1 ± f eq eq i )(1 ± fj )... i,j, [γ(ψ i + j + ) γ(i + j + ψ)] = 0 Sphaleron process and Leptogenesis 50/73

51 CP-symmetry n ψ n ψ f ψ (t) = f ψ(t), M(α β) = M(ᾱ β) n ψ n ψ γ(ψ i + j + ) γ(i + j + ψ) [ γ( ψ ī + j + ) γ(ī + j + ψ) ] = d p ψ (π) 4 δ 4 (p ψ p i p j ) = 0 { [ M(ψ i + j + ) M( ψ ī + j + ) ] f ψ (1 ± f i )(1 ± f j ) [ M(i + j + ψ) M(ī + j + ψ) } ] f i f j (1 ± f ψ ) Sphaleron process and Leptogenesis 51/73

52 f(t, p) n(t) Boltzmann eq. f(p, t) = n(t) n eq f eq (p) [#(elastic scatt.) #(inelastic scatt)] ṅ ψ (t) + 3H(t)n(t) [ n ψ = i,j, a,i, [ n eq ψ n ψ n a n eq ψ neq a γ eq (ψ i + j + ) n in j n eq i neq γ eq (ψ + a i + j + ) n in j γ eq ( ) = f eq (p) γ( ) j γeq (i + j + ψ) n eq i neq j γeq (i + j + ψ + a) ] ] Sphaleron process and Leptogenesis 5/73

53 n ψ (t) s entropy density: s = π 45 g T 3 g = B Hubble parameter in flat RD universe: H(t) g B F g F ( ) 1/ 8πG 3 ρ r = ( 8πG 3 π ) 1/ 30 g T 4 a(t) t 1/ T 1, H(t) = ȧ(t) a(t) = 1 t ṡ = 3 T sdt dt Y ψ n ψ s = 3sd log T dt = 3s 1 t = 3sH(t) ṅ ψ = sẏψ + ṡy ψ = sẏψ 3sH(t)Y ψ = sẏψ 3H(t)n ψ ṅ ψ (t) + 3H(t)n ψ (t) = sẏψ(t) Sphaleron process and Leptogenesis 53/73

54 t z = M T M =heavy-ν mass t z d dt = M dt T dt d dz = zd log T dt d dz = H(t)z d dz = ( 4π 3 45 g ) 1/ T m Pl z d dz = ( 4π 3 45 g ) 1/ M 1 d m Pl z dz s dy ψ dt = ( 4π 3 45 g ) 1/ π C M 4 1 z 4 dy ψ dz 45 g T 3 M 1 m Pl z dy ψ dz = ( π 45 g ) 3/ M 5 1 dy ψ π m Pl z 4 dz C = π ( ) π 3/ M 45 g m Pl [M m Pl ; cf. CDM] Sphaleron process and Leptogenesis 54/73

55 Boltzmann eq. C M 4 dy ψ z 4 dz = i,j, a,i, [ ] Y ψ Y eq γ eq (ψ i + j + ) Y iy j ψ Y eq i Y eq j γeq (i + j + ψ) [ ] Y ψ Y a Y eq ψ Y a eq γ eq (ψ + a i + j + ) Y iy j Y eq i Y eq j γeq (i + j + ψ + a) (ψ, a, i, j) = N i, l, l, ϕ, ϕ Sphaleron process and Leptogenesis 55/73

56 System of (N i, l, l, ϕ, ϕ) L = ±1 : N i lϕ, N i l ϕ, lϕ N i, l ϕ N i L = ± : lϕ l ϕ, l ϕ lϕ T m ϕ n eq l = n eq l = ζ(3) ( ) 3 π 4 3 gen isospin T 3, n eq ϕ = neq ϕ = ζ(3) π T 3 ν f eq (p) e E p/t n eq N = d 3 p (π) 3 e p +M /T = T 3 π = T 3 π z K (z) 0 dx x e x +z (z = M/T ) (K n (z) : modified Bessel function) Sphaleron process and Leptogenesis 56/73

57 C M i 4 dy Ni z 4 dz Boltzmann equations = Y N i Y eq N i [ γ eq (N i lϕ) + γ eq (N C = π l ϕ) ] ( π 45 g ) 3/ Mi m Pl + Y ly ϕ Y eq l Y eq ϕ γ eq (lϕ N i ) + Y ly ϕ Y eq l Y eq ϕ γ eq ( l ϕ N i ) C M i 4 dy l z 4 dz = Y N i Y eq N i γ eq (N i lϕ) Y ly ϕ Y eq l Y eq ϕ γ eq (lϕ N i ) + Y ly ϕ Y l eq Y ϕ eq γ eq ( l ϕ lϕ) Y ly ϕ Y eq l Y eq ϕ γ eq (lϕ l ϕ) C M i 4 dy l z 4 dz = Y N i Y eq N i γ eq (N i l ϕ) Y ly ϕ Y eq l Y eq ϕ γ eq ( l ϕ N i ) Y ly ϕ Y l eq Y ϕ eq γ eq ( l ϕ lϕ) + Y ly ϕ Y eq l Y eq ϕ γ eq (lϕ l ϕ) Y ϕ Y ϕ Sphaleron process and Leptogenesis 57/73

58 γ eq [f eq e E/T, 1 ± f eq 1] γ eq (N lϕ) = = = p 1 d 3 p 1 e E 1/T (π) 3 E 1 d p 1 f eq N (p 1)(π) 4 δ 4 (p 1 p p 3 ) M(N lϕ) d 3 p 1 (π) 3 E 1 e E 1/T M Γ rs (N lϕ) d 3 p 1 (π) 3 M E 1 e p 1 +M /T = M π d 3 p (π) 3 E d 3 p 3 (π) 3 E 3 (π) 4 δ 4 (p 1 p p 3 ) M(N lϕ) 0 decay width in the rest frame of N p dp p + M e p +M /T = T 3 π z K 1 (z) CPT-inv. γ eq (N lϕ) = γ eq ( l ϕ N) = T 3 π z K 1 (z) Γ rs (N lϕ) γ eq (N l ϕ) = γ eq (lϕ N) = T 3 π z K 1 (z) Γ rs (N l ϕ) Sphaleron process and Leptogenesis 58/73

59 Γ rs (N lϕ) Γ rs (N l ϕ) L Y = h ij ( N i 1 γ 5 ) ν j ϕ 0 N 1 γ 5 i e j ϕ + h ij ( ν j 1 + γ 5 ) N i ϕ γ 5 ē j N i ϕ amplitudes: p l j im(n i l j ϕ) = N i p 1 p 3 φ l j l j l j l j = N i N i N k N i l m l m N k N i l m N k φ φ φ φ im 0 + im A + im B + im C + Sphaleron process and Leptogenesis 59/73

60 Feynman rule for Majorana fermions Majorana 4-fermion N(x): N c (x) = C( N(x)) T = N(x), or ( N(x)) T = C 1 N(x) propagator: N a Nb = ( ) i, p/ M ab N a N b = C bc N a Nc = end point of an external line: ( ) i p/ M CT, N a Nb = ab ( C 1 ) i p/ M ab N a p, s = U s a(p), p, s N a = Ū s a(p), Na p, s = ( C 1) ab U s b (p), p, s N a = Ū s b (p) ( C T ) ba Dirac fermion: ψ a p, s = u s a(p), p, s ψ a = ū s a(p) : fermion in p, s ψ a p, s = v s a(p), p, s ψ a = v s a(p) : anti-fermion in p, s Sphaleron process and Leptogenesis 60/73

61 tree level : im 0 = ih ij ū s j (p ) 1 + γ 5 Ui s (p 1 ) one-loop : d im A = h im h kmh 4 k kj (π) 4 ūs j (p ) 1 + γ 5 M k k Mk ) ū s Ui s (p 1 ) = i(hh ) ik h kj C( M k M i j (p ) 1 + γ 5 k/ p/ 3 (k p 3 ) U s i (p 1 ) 1 (k + p ) im B = h im h kmh kj d 4 k (π) 4 ūs j (p ) 1 + γ 5 M k p 1 M k k/ k U s i (p 1 ) 1 (k + p 1 ) = i(hh ) ik h kj A(Mi M i M k ) Mi M k ū s j (p ) 1 + γ 5 Ui s (p 1 ) im C = h imh km h kj d 4 k (π) 4 ūs j (p ) 1 + γ 5 p/ 1 p 1 M k k/ k U s i (p 1 ) 1 (k p 1 ) M i = i(hh ) ki h kj A(Mi ) Mi M k A(p ) C(ξ) ū s j (p ) 1 + γ 5 Ui s (p 1 ) Sphaleron process and Leptogenesis 61/73

62 A(p ) = C(ξ) = 1 16π ξ 16π dx x [ log(x x ) + log( p iϵ) ] dx 1 x 0 dy 1 x (1 x y)ξ xy iϵ A(p ) is MS-regulated, while the Im-part is finite. total decay width tree-level contribution [ Γ(Ni l j ϕ) + Γ(N i l ] j ϕ) j = M i = 1 8π (hh ) ii M i d 3 p (π) 3 E d 3 p 3 (π) 3 E 3 (hh ) ii (p 1 p )(π) 4 δ 4 (p 1 p p 3 ) Sphaleron process and Leptogenesis 6/73

63 [ Γ(Ni l j ϕ) Γ(N i l ] j ϕ) j = 1 4π = [ ((hh M i Im ) ] [ M i M k ) ki M k i i M k [ ((hh Im ) ] ) ki [f(ξ k ) + g(ξ k )] M i (8π) k i ξ k M k/m i, f(ξ) = ξ ImA(M ) = 1 16π ξ ImC(ξ) = 16π ξ = 16π ξ = 16π )] M ImA(Mi ) + ImC( k Mi [ 1 (1 + ξ) log 1 + ξ ], g(ξ) = ξ dx x Im log( M iϵ) = 1 16π ( π) = 1 16π dx dx 1 x 0 1 x 0 dx 1 x x + ξ 1 x dy Im (1 x y)ξ xy iϵ dy π(1 x)δ ((1 x)ξ (x + ξ)y) 1 x 0 dy δ(y 1 x x + ξ ) = ξ 16π 1 0 dx ξ 1 ξ ( ) 1 + ξ x + ξ 1 Sphaleron process and Leptogenesis 63/73

64 N i ε i = 1 8π(hh ) ii k i Γ(N i lϕ) = 1 + ε i Γ(N i l ϕ) = 1 ε i [ ((hh Im ) ] ) ki [f(ξ k ) + g(ξ k )] Γ = (hh ) ii 16π (1 + ε i)m i Γ = (hh ) ii 16π (1 ε i)m i γ eq (N i lϕ) = γ eq ( l ϕ N i ) = (hh ) ii 3π 3 T 4 z 3 K 1 (z) (1 + ε i ) γ eq (N i l ϕ) = γ eq (lϕ N i ) = (hh ) ii 3π 3 T 4 z 3 K 1 (z) (1 ε i ) z = M i T Sphaleron process and Leptogenesis 64/73

65 L = ±-scattering terms: N k N k M os (lϕ lϕ) = M(lϕ N i ) πδ(s M i ) M i Γ i M(Ni l ϕ) 1 ϵ i 4 πδ(s Mi ) Γ i M i Γ i l i l j l i l j γ eq (lϕ l ϕ) = N k N k on-shell φ = T [ ] 4 (hh ) kk 3π 16π γ eq ( l ϕ lϕ) = T [ ] 4 (h h T ) kk 3π 16π φ 0 0 φ dt t K 1 (t) f(t /z ) dt t K 1 (t) f(t /z ) φ [See, Appendix of Buchmüller, et al., Ann. Phys. 315; Kolb and Wolfram, Nucl. Phys. B17 ( 80), for detail] Sphaleron process and Leptogenesis 65/73

66 toy model with flavors M 1 = 10 6 m Pl, M /M 1 = 10, ε 1 = ε = 10 8 initial conditions: Y N = Y eq N, Y l = Y l = Y eq l, Y ϕ = Y ϕ = Y eq ϕ at z = M 1 /T = x10-1x10-3 1x10-4 1x10-5 1x10-6 1x10-7 1x10-8 1x10-9 1x x x10-1 1x10-13 (hh ) 11 =(hh ) =10 3 Y L Y eq N Y N 1x z = M 1 /T Y eq N 1 Y N1 1x10-1x10-3 1x10-4 1x10-5 1x10-6 1x10-7 1x10-8 1x10-9 1x x x10-1 1x10-13 (hh ) 11 =(hh ) =10 6 Y eq N Y L 1x z = M 1 /T Y eq N 1 Y N Y N1 Sphaleron process and Leptogenesis 66/73

67 1x10-9 Y l Y l Y ϕ Y ϕ constant (hh ) = 100(hh ) 11 (hh ) =(hh ) 11 L Y L 1x10-10 (hh ) = 10(hh ) 11 (hh ) =10 (hh ) 11 (hh ) 11 (hh ) (hh ) =10 1 (hh ) 11 1x10-1x10-3 (hh ) 11 =(hh ) =10 1x x10-6 1x10-5 1x10-4 1x10-3 1x10-1x10-1 (hh ) 11 1x10-4 1x10-5 Y N Y N1 1x10-6 1x10-7 1x10-8 1x10-9 1x x10-11 Y L Y N = 0 N L 1x10-1 1x x z = M 1 /T Sphaleron process and Leptogenesis 67/73

68 { hij ν L N R M i U MNS y ij (l L e R ), h ij, M ij GUTs lepton sector: (y ij, h ij ) quark sector: (y (d), y (u) ) (,3)-model N i ν i [Endo, et al., Phys. Rev. Lett. 89 ('0)] oscillation data : h O(1) M GeV m ν (hv 0 ) /M h O(0.01) M GeV h M < T R... e.g. weak scale M EW leptogenesis [Hill, Murayama, Perez, hep-ph/050448] Sphaleron process and Leptogenesis 68/73

69 6. Discussions Baryogenesis, Leptogenesis Sphaleron process and Leptogenesis 69/73

70 Leptogenesis, GUTs baryogenesis, CDM abundance spatially uniform system Boltzmann equation f(p, t) n(t) n eq f eq (p) Full Boltzmann equations Garayoa, Pastor, Pino, Rius and Vives, hep-ph/ Basbøll and Hannested, JCAP 0701 ('07) [hep-ph/060905] full Boltzmann K = Γ(N lϕ) H(T = M R ) integrated Boltzmann large K large Yukawa coupling Sphaleron process and Leptogenesis 70/73

71 For small K ( 0.1): η L lϕ l ϕ effective for thermalization For K 1: For K > 1: η L N R (K = 1) η L = n L n γ K η full by full Boltzmann η int by integrated Boltzmann Sphaleron process and Leptogenesis 71/73

72 GUTs & EW baryogenesis, Leptogenesis, CDM abundance, etc formulations integrated Boltzmann equation full Boltzmann equation Kadanoff-Baym equation Sphaleron process and Leptogenesis 7/73

73 Sphaleron process and Leptogenesis 73/73

phaleron decoupling and E hase transitio 2/45

phaleron decoupling and E hase transitio 2/45 1/45 phaleron decoupling and E hase transitio 2/45 Sphaleron σφαλϵρos = ready-to-fall, deceitful [cf. a sphalt] [Klinkhamer and Manton, Phys. Rev. D30 ('84)] 4-dim. SU(2) gauge + 1-doublet Higgs 2-dim.

More information

2/31

2/31 1/31 2/31 Friedmann-Robertson-Walker ( ) dr ds 2 = g µν (x)dx µ dx ν = dt 2 R0 2 a(t) 2 2 1 kr + 2 r2 (dθ 2 + sin 2 θdϕ 2 ) [Kolb & Turner, The Early Universe, etc.] (k = 0, ±1) Einstein eq. : R µν (x)

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

nakayama.key

nakayama.key 2017/11/1@Flavor Physics Workshop 2017 Contents CP 1932 10 4 p + p! p + p + p + p P. Blasi, 1311.7346 d d. 10 Gpc 10 0 Cohen, De Rujula, Glashow (1997) d B0 Flux [photons cm -2 s -1 MeV -1 sr -1

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

DaisukeSatow.key

DaisukeSatow.key Nambu-Goldstone Fermion in Quark-Gluon Plasma and Bose-Fermi Cold Atom System ( /BNL! ECT* ") : Jean-Paul Blaizot (Saclay CEA #) ( ) (SUSY) = b f b f 2 (SUSY) Q: supercharge b f b f SUSY: [Q, H]=0 Supercharge

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

宇宙の背景輻射 現在 150億年 50億年 星や銀河の 形成 自然界には4つの力 3つの分岐点が今回のシリーズの目標 3K LHC温度 1016K (10-12 ~ 10-14s) 10億年 (2) GUTへの挑戦 超対称性による大統一 3000K 30万年 原子 分子の形成 3分 原子核の形成 10-10 秒 弱い相互作用が分離 3つの力が分離する 量子重力の世界 10-34 秒 10-43 秒

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information