Quz Quz

Similar documents
120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


i

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

II 2 II

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

77

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

i

Note.tex 2008/09/19( )

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


Part () () Γ Part ,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

untitled

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

Untitled

The Physics of Atmospheres CAPTER :

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Gmech08.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

notekiso1_09.dvi


G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

sin.eps

Gmech08.dvi


Microsoft Word - 11問題表紙(選択).docx

TOP URL 1

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C


1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

,,..,. 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

/Volumes/NO NAME/gakujututosho/chap1.tex i

Xray.dvi

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

Gmech08.dvi

OHO.dvi

/Volumes/NO NAME/gakujututosho/chap1.tex i


6.1 (P (P (P (P (P (P (, P (, P.

c 2009 i

6.1 (P (P (P (P (P (P (, P (, P.101

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

2012 A, N, Z, Q, R, C

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

高知工科大学電子 光システム工学科

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


Microsoft Word - 章末問題

untitled

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

chap9.dvi

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

meiji_resume_1.PDF

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Transcription:

http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195)..

Quz Quz

II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3) B = j (1.4) E B B - - Maxwell (1.) E= 1

E = φ (1.4) B (1.3) B = (1.1) E = ρe / ε B I B = B A B= A B B= A - (1.1) E = ρe / ε (1.3) B =

II q F= qe (.1.1) (.1.1) F E = (.1.) q q F= qv B (.1.3) v B magnetc flux densty 3

I (3) F v B v B F v B F = qvbsnθ (.1.4) θ v B v B v B 4

B (.1.3) B θ = π / (4) B v F F v B B = (.1.5) qv B MKSA B (5) F N B = (.1.6a) qv C(m/s) II N/C V/m F Vs B = T (.1.6b) qv m Vs/m teslat Vs WeberWb B Wb/m Wb B : T (.1.6c) m 5

(.1.1) (.1.3) q v F= q( E+ v B ) (.1.7) Lorentz force v = v + v j+ v k, B= B k x y z x, yz, v 1 4 m/s, 1 3 m/s, 1 3 x = vy = vz = m/s B = 1T x, yz, z E B E= E, B= ( B ) k y E v= vyj, vy = B q= e: e ( x, yz, ) 6

B B magnetc feld strength H B= H (..1) MKSA 1 π 7 = = 4 1 c ε m H (..) c : m /s, ε : C/(V m) s V m V s V s : m C (C/s) m A m H : / (..3) m Vs 1H = 1 (..4) A 7

(..1) (.1.6b) H A H : (..5) m H B H D D H A/m B q v v B F= qv B v N V N V V F F= ( N V)( qv B) (.3.1) V = S l : l : (.3.1) F= ( Nqv S l) B (.3.) Nqv S j e 8

F = j S l B (.3.3) e j S e F= I B l, I = j S (.3.4) e F ( F/ l) F= I B (.3.5) 9

(.3.5) N/m B z B= B + B j+ B k x y z, j,k xyz B = T, B = T, B = T x y z I = 1A F F = F z ( B= Bzk) ab, x ( x, y) θ 1

134 x a snθ I S( = ab) n m= ISn (.3.6) τ = m B (.3.7) m p q d p= qd p79 E τ = p E 11

- - II ( ) s q = λ s λ E j 1

E 1 q j R E () r = 4πε R R 1 λ s R = 4πε R R r P ( x, y, z ) j j j r Q ( x, yz, ) R P Q R = r r 13

N N 1 λ s R Er () = E () r = = 1 = 1 4πε R R N 1 λ R E ( x, yz, ) = ds 4πε R R j 14

Bot-Savart Law ( v = ω r) v ω r I 15

- - - ( ) P( x, y, z) s s I = I s, (3..1) s = s k (3..) 16

( - - ) I Q ( x, yz, ) B I R (3..3) = 4π R R 17

R P( x, y, z ) Q ( x, yz, ) R = r r (3..4) r Q ( x, yz, ) r P( x, y, z) R P Q R = r r (3..5) (3..3) - (3..3) I B j I B I R I R I = I s P Q R I R θ I R = I R snθ = IRsnθ (3..3) I snθ I snθ B = (3..6) 4π R R I B R R 18

( ) N N I s R B= B j = = 1 = 1 4π R R N I s R B = 4π (3..7) R R I Br () = e (3..8) π R θ R eθ (3..7) 19

r (,, z ) ( x, y) r( x, y,) R j ( R = x+ yj + z) k R = Re z e, R = x + y R z I p.17 r(,, z) I s = I zez R θ

r( x, y,) B RI z B = e, 3/ θ R = x + y 4 π ( R + z ) r( x, y,) B I Br () = e (3..8) π R θ + dz j = 3/ ( R + z ) R II p.3 B z R = x + y z = r( x, y,) z r( x, yz, ) z ( x, y) Br j () = Bx + By B ( / ), x = B y R B = B ( / ), x R B = I / π R, R = x + y y ( x, y) 1

( ) a I P( x, y,) a er Q (,, z) z e z P Q R I = Ia θeθ R j I = Ia θeθ I R er, eθ, ez I Q

Iaz Ia B = dθe 3 R + dθe 3 z 4π R 4π R Q B B 1 a B(,. z) = I e z, R = a + z 3 R er er = cosθ + snθ j I S IS z R a z B(,, ) = e, 3 z = +, π R S = π a z m B(,, z) =, m= ISn 3 π z m n 3

I a B 4

ds I III j I I = jds e ds S s ds je 5

Ids= ( j ds) ds= j dv (3.3.1) e e dv = dsds ds ds r( x, yz, ) Br () - (3..7) Ids j e dv ( ) e Br () = dv 4π j r R (3.3.a) V R R r e( ) = 3 4π j r R V R Br () dv (3.3.b) R = r r r r R (3..7) (3..7) (3.3.) dv = dsds 6

j e = I / d (A/m) (3.3.3) d I I = jd (3.3.4) e ds ds 7

Ids= ( j d ) ds= j ds (3.3.5) e e ds ds = dds r( x, yz, ) Br () - (3..7) j e Br () ( ) j r R e = 4π S R R ds (3.3.6a) Br () e( ) = 3 4π j r R V R ds (3.3.6b) (3.3.) 8

P( x, y, z) I Q ( x, yz, ) B B () r = 4π R= r r r Q ( x, yz, ) r P( x, y, z ) R P Q R = r r I I I R I R I R I R θ I R = I R snθ = IRsnθ B B B = 4π I B R 9

q = I = - E = B = N Er ()= Br ()= N Er ()= Br ()= 3

B (a) I (I ) (b) I (I ) (a) (b) (a) (b) 31

I C A d r (4.1.1) C I (4.1.1) (4.1.1) z B C ( x, y) a B C 3

r( R, θ, z) I Br () = e (4.1.a) π R θ z R = x + y θ z C R = a I B( R= a) = e (4.1.b) π a θ C a dr I dr = adθe θ (4.1.3) C π I I π B dr = ( ad ) d C eθ θ θ = θ πa e π (4.1.4) B d r C I (4.1.5) = B C B 33

a B C B C Ampere s Law Ampere s Law of Crculaton) B d r = I = C S (4..1) C 34

C S I1, I,, IN I N I = I (4..) = 1 C j () e r C j () e r I = j () e r ds (4..3) S B dr = je () r ds (4..4) C S 35

(4..1) (4..4) B I A( x, yz, ) C A C S A ( A = rot A) A dr = A ds (4.3.1) C S (4..4) B dr = B ds= j ds (4.3.) C S S ( ) B j ds= (4.3.3) S S B = j (4.3.4) 36

I (4.1.5) (b) C1, C, C3 CC, 1, C, C 3 S1 S1 C1, C3 N (4.1.5) 37

a I P B I 38

z I e ( ) z R a je () r = π a (4.4.1) ( a< R) B z R θ z Br () = B( R) e θ (4.4.) P < R < a C R dr = Rdθ eθ (4..4) π ( ) B dr = B( R) eθ ( Rdθeθ) = πrb( R) (4.4.3) C R a I je() r = e z (4.4.4) π a ds= nrdrdθ S n= e (4.4.5) z R π I je() r ds= S e z e z θ π a I R π RdRdθ π a = ( RdRd ) 39

I π a = π R (4.4.6) (4.4.3) (4.4.6) I π RB( R) π π a = R (4.4.7) I π a B( R) = R (4.4.8) P a< R C R (4..4) B d r = π RB( R) (4.4.9) C a< R R a a π I jr () ds= ( ) S ez e zrdrdθ = I (4.4.1) π a π RB( R) = I (4.4.11) I π R BR ( ) = (4.4.1) 4

I Br () = e (4.4.13) π R θ j ( R) = j (1 R ) e a e e z I j e 41

x - z P (, a,) Q (, a,) z R(,, z) B ( z > ) ( z < ) 4

P Q R P R ( z > ) B P r = aj P Rr = zk R P P RP = r rp = zk aj R P = z + a (4.4.14) RP R p / Rp R zk aj = p R p z + a (4.4.15) x 43

IP = Ids= Ids (4.4.16) R p ( zk aj) Izds( k) Iads( j) Ids = Ids = (4.4.17) R p z + a z + a R p Izds( j) Iadsk Ids = (4.4.18) R p z + a P R 44

- (4..3) P R B P R I P R P BP R = B = yj Bzk (4.4.19) 4π RP RP Izds By = 4 π ( z + a ) 3/ Iads Bz = 4 π ( z + a ) 3/ (4.4.) (4.4.18) B P R yz, P Q R 45

Q P rq = aj P Rr = zk RQ RQ = r rq = zk+ ajr Q = z + a (4.4.1) Q P IQ = Ids= Ids (4.4.) Q R I R B B j Bzk (4.4.3) Q Q Q R = = y + 4π R Q R Q B, B (4.4.) y z (4.4.19) (4.4.3) B = B + B = B j (4.4.4) R P R Q R y R z < z > z > B = B + B = B j (4.4.5) R P R Q R y 46

- B B C ( C: C1 C C3 C4) (4..4) B dr = j() r ds (4.4.6) C C C 1 1 1 C 3 3 4 4 C3 C4 S B dr = B dr + B dr + B dr + B dr (4.4.7) 47

(4.4.7) C C B dr B dr = C 4 B dr C C 4 C B dr = B dr + B dr C C 4 4 C4 = ( Bj) ( drj) + ( Bj) ( drj) = B (4.4.8) (4.4.6) (3.3.3) j e (A/m) j () r d S = j e (4.4.9) S e B B = je (4.4.3) 1 = B j e (4.4.31) (4.4.31) B II B 48

R z < BP R B Q R B R - (4.4.5) 49

n I y x 5

R R P Q I P I Q R B B, B P R Q R B = B + B (4.4.3) R P R Q R BR y R y CC,, C C B dr = B dr + B dr + B dr + B dr (4.4.33) 1 1 3 3 4 4 1 3 4 C C C C C C C B dr B dr = C C 4 B dr C 4 B dr C C 4 B dr = B dr + B dr 4 4 4 C C C = ( Bj) ( drj) + ( B4j) ( drj) 4 = ( B B ) (4.4.34) 51

C jr () ds = (4.4.35) S 5

(4.4.34) (4.4.35) ( B B ) = (4.4.36) 4 B = B4 Bn (4.4.37) B B (4.4.37) B n C B dr = B dr + B dr + B dr + B dr (4.4.38) 1 1 1 3 3 4 4 3 4 C C C C C C C B dr = C B d r C 4 B d r C C 1 3 B dr = B dr + B dr 4 4 4 C C C = B dr + B 4 dr ( j) ( j) ( j) ( j) = ( B + B ) (4.4.39) 4 C jr () ds = (4.4.4) S (4.4.39) (4.4.4) ( B + B ) = (4.4.41) 4 53

B = B B (4.4.4) 4 ex B B B = (4.4.43) ex C B dr = B dr + B dr + B dr + B dr 1 1 3 3 4 4 C C1 C C3 C4 (4.4.44) B dr = B dr + B dr 4 4 C C C4 (4.4.45) (4.4.37) (4.4.43) B = BnjB 4 = B ex j = C dr = dr j B dr = ( B j) ( dr j) = B C C n n (4.4.46) C C C C S 54

j () r d S (4.4.47) S n I j e = ni (4.4.48) 4 S j = j ds = d (4.4.49) e e d x L+ je() r S= S L e = d j d ni (4.4.5) (4.4.46) (4.4.5) Bn Bn = ni (4.4.51) B = ni n 55

B = ( ni) j (4.4.5) n Bext = (4.4.53) 56

a b I ) < r < a, ) a< r < b, ) b< r a,b a b j, j ) < r < r1 a, ) r 1 a< r < r 1 + a, ) r1+ a< r < r b, v) r b< r < r + b, v) r + b< r e e 57

Quz 1. C C S I1, I,, IN I I = C C j () e r C S j () e r 58

- r r q r I r d E () r = d B () r = R =, R = R =, R = N q1, q,, qn N I1, I,, In E d S = S B d r = C ρ () e r j () e r S E ds= dv B dr = ds V C S 59

- e( ) = 3 4π j r R V R Br () dv (5.1.1) R = r r R = r r (5.1.) r j ( r ) e r B dr = je () r ds (5.1.3a) C S B = j e (5.1.3b) II - E d r = (5.1.4a) C E= (5.1.4b) 6

C magnetc scalar potental (5.1.3a) (5.1.1)(5.1.3a) 5.1.3b B = (5.1.5) - (5.1.5) (5.1.5) B I B A B= A (5.1.6) I I 61

- - B (5.1.6) A - (5.1.1) R (5.1.) R = r r = ( x x ) + ( y y ) j+ ( z z ) k (5..1a) R = r r = ( x x ) + ( y y ) + ( z z ) (5..1b) II (4.3.6) 1 R = R 3 R (5..) R R 3 1 = R - (5.1.1)R / R 3 1 Br () = e( ) dv 4π j r (5..3) V R I j e 1 1 = ( je) + j e (5..4) R R R 6

je( r) r ( x, y, z) ( x, yz, ) j e = (5..5) (5..5) (5..4) 1 j e j e = (5..6) R R (5..3) je( r) Br () = dv 4π (5..7) V R ( x, y, z) ( x, yz, ) (5..7) je( r) Br () = dv 4π (5..8) V R (5..8)[ ] A je( r) A = dv 4π (5..9) V R B A 63

B= A (5..1) B = B - B B = (5..9) II (4.3.8) 1 ρ( x, y, z) φ( x, yz, ) = dv 4πε R (,, ) (,, ) e x y z A x yz = dv 4π j (5..11) V R V ρ( x, y, z ) j ( x, y, z ) (5..1) e R = r r = ( x x ) + ( y y ) + ( z z ) (5..13) (5..11) x jex( x, y, z) Ax( x, y, z) = dv 4π (5..14) V R 64

je( x, y, z) B= A I B B B A y z x = A z x y = z A y z Az x Ay Ax = x y (5..15a) (5..15a) (5..15c) (5..) 65

A (5.1.6) B= A (3.3.1) j dv e = Ids 66

(5.3.1) Ids A = 4π (5.3.1) C R d s R P r r d s ds = adϕ e ϕ (5.3.) R = r r R = ( r r ) ( r r ) = r r r + r (5.3.3) r = a R = r rr + r = r rr + a (5.3.4) P r r = a r a (5.3.5) Taylor 1 1 1 rr = 1 + r rr + a R r r (5.3.6) Ids I 1 r r A 1 ds (5.3.7) = + 4π C R 4π C r r A I I ( ) d 3 4π r s 4π r r r s (5.3.8) = d + C C 67

d s = (5.3.9) C π π ( adϕ e ad ( sn cos ) ϕ = ϕ ϕ + ϕj = ) I A = ( ) d 3 4π r r r s (5.3.1) C P r ( x, y) R P zp = zk r = RP + z P (5.3.11) RP = RPer, RP = x + y z = zk P (5.3.1) (5.3.1) r r r ( x, y) z r = p r r = ( R + z ) r = R r = RacosΦ (5.3.13) p p p p Φ R P r Φ = ϕ ϕ A I IRpa π = Racos( )( ) cos( ) 3 p ϕ ϕ adϕ d 3 4 r C ϕ = ϕ ϕ ϕ 4 r ϕ π e π e (5.3.14) eϕ = snϕ + cosϕ j ϕ ( ) π cos( ϕ ϕ ) e d ϕ ϕ = πe ϕ (5.3.15) 68

IRp ( πa ) A= e 3 ϕ (5.3.16) 4π r (5.3.16) R = rsnθ (5.3.17) p I( πa ) snθ A= e ϕ (5.3.18) 4π r I( πa ) snθ Ar =, Aθ =, Aϕ = (5.3.19) 4π r (5.1.6) B= A (5.3.18) A I B r ( snθ Aϕ ) 1 1 A θ = ( A ) r = (5.3.) rsnθ θ r ϕ B θ 1 A 1 ( ) ( ) r raϕ = A θ = (5.3.1) rsnθ ϕ r r 69

B ϕ ( ra ) 1 θ 1 A r = ( A ) ϕ = (5.3.) r r r θ (5.3.19) B r ( sn A ) ϕ I( a ) 1 θ 1 π sn θ = = rsnθ θ rsnθ θ 4π r (5.3.3) B θ 1 ( raϕ ) 1 I( πa ) snθ = = r r r r 4π r (5.3.4) B ϕ = (5.3.5) B B r θ I( πa ) cosθ = 3 4π r (5.3.6) I( πa ) snθ = 4π r (5.3.7) B ϕ = (5.3.8) 7

cos( ϕ ϕ ) = cosϕcosϕ + snϕsnϕ e = snϕ + cosϕ j ϕ cos( ) cos cos sn sn sn ϕ ϕ eϕ = ϕ ϕ ϕ ϕ ϕ + cosϕ cos ϕ j+ snϕsnϕ cosϕ j 1 = cosϕ sn ϕ snϕsn ϕ + cosϕcos ϕ j+ snϕ sn ϕ j 1 π 1 cosϕ sn ϕ dϕ = π π snϕ sn ϕ dϕ = snϕ sn ϕ dϕ = π snϕ π π d π cosϕ cos ϕ j ϕ = cosϕ cos ϕ dϕ = π cosϕj 1 snϕ sn ϕ jdϕ = π ϕ ϕ e d ϕ ϕ = π ϕ+ π ϕ= π ϕ+ ϕj cos( ) sn cos ( sn cos ) π cos( ϕ ϕ ) e d ϕ ϕ πe ϕ = 71

+ q, q P ( x, yz, ) 1 pr φ() r (4.3.9) = 3 4πε r r P r = x+ yj+ zk p p= qd, d= dk (4.3.1) q d qd 1 p 3 r( p r) Er () = + 3 5 4πε r r 7

P ( x, yz, ) Ar () m r 4π r = 3 m m = IS, S= Sn I S m= IS S n 73

a z S = π a, n= k (5.3.18) I( π a ) snθ m r Ar () = e () ϕ Ar = 3 4π r 4π r φ v ( φv) = φ( v) + ( φ) v m r 1 1 Ar () = ( ) ( ) 3 = 3 + 3 4π r 4π m r m r r r I ω = ωk, ω = const. ( ω r) = ω ω m ( m r) = m A [ ] 1 m ( ) 3 m r = 3 r r A [ ] 1 3 r, 3 = r = r 4 r r r I 74

a ( b c) = ( a c) b ( a b) c [ ] 1 3m 3( m r) ( ) 3 m r = + r 3 5 r r r B() r m 3( m r) 4π r r r = 3 5 Br, Bθ, B (5.3.6) ϕ (5.3.8) 75

76 = p : q : d = m : I : S ( ) 1 () 4 φ πε = r : r ( ) () 4 π = Ar : r () φ = Er [ ] 1 () 4πε = Er = B A [ ] () 4 r π = B

r ( x, y, z ) je( r ) = je( x, y, z ) r( x, yz, ) 3 je( r ) = j e( x, y, z ) e( x, y, z ) Br () = dv 3 4π j R V R R = r r R = r r Br () = 4π C Ids R 3 R 77

je( r ) = j e( x, y, z ) e( x, y, z ) A ( x, yz, ) = dv 4π j V R B= A A = 4π C Ids R (1/ R 3 ) (1/ R ) 78

B = Α (5.5.1) = Α ( Α) A (5.5.) j = j = e e A = (5.5.3) B= A (5.5.4) B = j e (5.5.5) A = j e (5.5.6) Ax = Ay = Az = j, j, j ex ey ez (5.5.7) 79

ρ φ = e ε A = e( x, y, z ) A( x, yz, ) = dv 4π j V R R = r r R = r r 1 A= e e dv 4π j V R ( x, yz, ) ( x, y, z ) j e = ( x, y, z ) = + j + k x y z 1 1 = R R φ v ( φ v) = φ( v) + v ( φ) 8

je 1 1 = j e + j e R R R j = e je A = dv 4π V R V V j = e V V j j e dv = e dv V R V R A 4π j ds R e = S S V j = e A = 81