I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

Similar documents
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

³ÎΨÏÀ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

tnbp59-21_Web:P2/ky132379509610002944

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

29


1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Gmech08.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Z: Q: R: C: sin 6 5 ζ a, b

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

agora04.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

プリント

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

QMI_09.dvi

QMI_10.dvi

数学概論I

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


pdf

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

Untitled

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(JAIST) (JSPS) PD URL:

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


本文/目次(裏白)


201711grade1ouyou.pdf

( ) (, ) ( )


第1章 微分方程式と近似解法

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Morse ( ) 2014

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =


1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

TOP URL 1

( ) Loewner SLE 13 February

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

( )

PSCHG000.PS

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

QMII_10.dvi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a


I

all.dvi

2000年度『数学展望 I』講義録

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Z: Q: R: C: 3. Green Cauchy

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t


ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Chap11.dvi


第10章 アイソパラメトリック要素

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

chap9.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Transcription:

I 2012 00-1 I : October 1, 2012 Version : 1.1 3. 10 1 10 15 10 22 1: 10 29 11 5 11 12 11 19 2: 11 26 12 3 12 10 12 17 3: 12 25 1 9 1 21 3 1

I 2012 00-2 z n+1 = zn 2 + c (c ) c http://www.math.nagoya-u.ac.jp/~kawahira/courses/12w-tenbou.html pd L.V. K. 2 http://www.math.nagoya-u.ac.jp/~kawahira/courses/mandel.pd R. Devaney 2 10 15 22 29 10 30 11 19 3 11 Cae David Cae David 12:00 13:30

I 2012 01-1 1 : October 15, 2012 Version : 1.1 (ractal) ractus (Benoit Mandelbrot, 1924 2010 (sel-similartity) 1. 2 etc 1. 1: 2 1

I 2012 01-2. I = [0, 1] R T 0, T 1 : I I T 0 (x) := x 3 T 1 (x) := 1 (x 1) + 1 3 E 0 := I E 1 := T 0 (E 0 ) T 1 (E 0 ) E 2 := T 0 (E 1 ) T 1 (E 1 ). E n+1 := T 0 (E n ) T 1 (E n ) 1-1. (1) n 0, E n+1 E n. 2 (2) n 0, E n.. C := n 0 E n I 3 (Cantor s triadic set) 1-1 3 C C C C = T 0 (C) T 1 (C). C 1 C : N C 2 C : Σ C Σ = {u 1 u 2 u k = 0 1 k N} 0 1 1.1 (a) (a) : C T 0 (C) T 1 (C) (b) : C T 0 (C) T 1 (C)

I 2012 01-3 1-2. 1-3. 1-4. (b) 1.1 1.1. 1 s = e πi/6 / 3 C 0, 1, s I T 0, T 1 : I I T 0 0, 1, s 0, s, 1/3 T 0 0, 1, s s, 1, 2/3 E 0 := I, E n+1 := T 0 (E n ) T 1 (E n ) E n K := n 0 E n (Koch s curve) 1-5. K (1) K (2) g : Σ K (3) K 2 (4) K 1-6. K [0, 1]

I 2012 02-1 2 IFS : October 22, 2012 Version : 1.1. I = [0, 1] R T 0, T 1 : I I T 0 (x) := x 3 T 1 (x) := 1 (x 1) + 1 3 E 0 := I, E n+1 := T 0 (E n ) T 1 (E n ) E n+1 E n C := E n n 0 I 3 (Cantor s triadic set). s = e πi/6 / 3 C 0, 1, s I T 0, T 1 : I I T 0 (x) := sz T 1 (x) := s(z 1) + 1 E 0 := I, E n+1 := T 0 (E n ) T 1 (E n ) E n K := E n n 0 (Koch s curve) 2-1 1-5, 1-6 K (1) K (2) g : Σ K (3) K 2 (4) K (5) K [0, 1] (6) K = T 0 (K) T 1 (K) 3. 4. 1 2 1 3

I 2012 02-2 IFS IFS Iterated Function System (IFS) X R n {F 1, F 2,..., F m } (m 2) X IFS i = 1,..., m r i (0, 1) ( ) x, y X, F i (x) F i (y) r i x y. ( ) F i X = I R X = I R 2 C IFS ( ) 2-1. IFS IFS X R n {F 1, F 2,..., F m } (m 2) X IFS A X F (A) := F 0 (A) F m (A) 2-2 IFS IFS F (E) = E E X E IFS E 0 := X E n+1 := F (E n ) (n 0) E n+1 E n E = n 0 E n. Comp (X) X A Comp (X) δ > 0 A δ- N δ (A) := {x R n a A, x a < δ} A, B Comp (X) d(a, B) := in {δ > 0 N δ (A) B N δ (B) A}

I 2012 02-3 2-3 Comp (X) d A, B, C Comp (X) (D1) d(a, B) 0 A = B (D2) d(a, B) = d(b, A) (D3) d(a, B) d(a, C) + d(c, B). 2-2. 2-3 X Comp (X) := Comp (X) 2-4 (Comp (X), d) Comp (X). 2-5 (S, d) F : S S r (0, 1) ( ) x, y S, d(f (x), F (y)) r d(x, y) F S F (x 0 ) = x 0 x 0 S 2-3. 2-5 2-2 F F : Comp (X) Comp (X) A, B Comp (X) ( ) d( F (A), F (B)) max r i d(a, B) 1 i m r := (max 1 i m r i ) < 1 F 2-5 ( ) E Comp (X) 2-4. 2-2 Hint d(e n+1, E) = d( F (E n ), E) r d(e n, E)

I 2012 02-4 X IFS {F 1,..., F m } F i : X X r i (0, 1) E r d 1 + r d 2 + + r d m = 1 d 0 d = dim S (E). 3 ( 1 d ( 3) + 1 ) d log 2 3 = 1 d = log 3 0.631. 2-5. 10 Mathematica E Comp (R n ) ν r (E) E r log ν r (E) lim r +0 log r E dim B (E) 2-6. (1) [α, β] R 1 (2) A = {0, 1, 1/2, 1/3,..., 1/n,...} 1/2 (a) U R n (diameter) diam U := sup x y x,y U (b) δ > 0 R n {U i } i N E R n δ- i N diam U i δ E i N U i (c) s 0 δ > 0 H s δ (E) := in i N(diam U i ) s [0, ] in E δ- (d) E s H s (E) := (e) E H s (E) = dim H (E) { (0 s < d) 0 (s > d) lim δ +0 Hs δ (E) [0, ] d 0. E 3 dim S (E) = dim B (E) = dim H (E).

I 2012 03-1 3 : October 29, 2012 Version : 1.1 X R n {F 1, F 2,..., F m } (m 2) X IFS F i (1 i m) r i (0, 1) E d = dim S (E) : r d 1 + rd 2 + + rd m = 1 d 0 d = dim B (E) : d log ν r (E) = lim r +0 log r, ν r(e) E r n d = dim H (E) : H s (E) = d 0 { (0 s < d ) 0 (s > d ) 3-1 IFS dim S (E) = dim B (E) = dim H (E). IFS {F 1, F 2,..., F m } (open set condition) 3 U (1) U (2) F 1 (U), F 2 (U),..., F m (U) (3) U F 1 (U) F m (U). 3-1. E 3 IFS U = X z 0 C z n+1 = z 2 n (n = 0, 1,...) z n = z 2n 0 n z 0 < 1 z n 0 z 0 > 1 z n z 0 = 1 z n = 1

I 2012 03-2 (z) z 0 C, z n+1 = (z n ) (n = 0, 1,...) n (z) = z 2 (z) 3-0. 2 m z 0 = z m z 0 z k (k = 1,, m 1) z 0 {z 0, z 1, } z 0 z 1 z 2 z 3 (1) C C C C z 0 C 0, 1, 2, 3, 4,... z 1 (z) C C C C C (dynamcal system) 1 (C, ). (1) z 0 (z 0 ) ((z 0 )) (((z 0 ))) 1 X : X X X (complex dynamics) (discrete dynamical systems)

I 2012 03-3 n {}}{ n (z) := (z) ( 0 (z) = z) z n = n (z 0 ) (C, ) z 0 C { n (z)} n 0 z 0 (orbit) (z) (C, ) (z) = z 2 z 0 z ϵ = z 0 +ϵ (ϵ C, ϵ ) ϵ z 0 < 1 z ϵ < 1 n (z ϵ ) 0 z 0 > 1 z ϵ > 1 n (z ϵ ) z 0 = 1 z ϵ > 1, z ϵ < 1, z ϵ = 1 n (z ϵ ) 0, n (z ϵ ), n (z ϵ ) = 1 2 60 X, Y C : X X, g : Y Y (X, ) (Y, g) (conjugate) ϕ : X Y ϕ = g ϕ 3-1. (X, ) (Y, g) ϕ : X Y 2 { n } n 0

I 2012 03-4 (1) x X n (x) a X (n ) g n (ϕ(x)) ϕ(a) Y (n ). (2) x X n (x) = x (n 1) g n (ϕ(x)) = ϕ(x). 3-2 2 2 (z) = az 2 + bz + c (a 0) (C, ) 2 (C, g) g(w) = w 2 + C, C = b 2 /4 + b/2 + ac C. 2 c (z) = z 2 + c (c C) 2

I 2012 04-1 4 2 : October 29, 2012 Version : 1.1 3-2 2 2 (z) = az 2 + bz + c (a 0) (C, ) 2 (C, g) g(w) = w 2 + C, C = b 2 /4 + b/2 + ac C. w = ϕ(z) = az + b/2 C ϕ = g ϕ (z) = c (z) = z 2 + c (c C) 2 4-1. 2 (z) = az 2 + bz + c (a 0) λ C (C, ) (C, λw + w 2 ) B c K c c C (C, c ) 4-1 z C (1) c n (z) (n ) (2) {c n (z)} n 0. 1, 1, 2, 1/2, 3, 1/3,..., n, 1/n,... 4-2 z 3 + c c (z) 2 z 4-2. (Hint: ) 4-1. (2) m N c m (z) 3 + c 4-2 k N c k+m (z) = c k (c m (z)) 2 k c m (z) 2 k (3 + c ) (k ). z (1) 4-1 (1) (2) (1) B c := {z C c n (z) (n )} { } (2) K c := z C {c n (z)} n 0. J c := K c. B c K c = C (disjoint union)

I 2012 04-2. c = 0 B 0 = { z > 1}, K 0 = { z 1}. B c, K c. c = 2 B 2 = C [ 2, 2], K 2 = [ 2, 2] R.. B 0 = { w > 1} ϕ : B 0 ϕ(b 0 ) C ϕ(w) = w + 1/w ϕ(b 0 ) = C [ 2, 2] ϕ 2 (ϕ(w)) = ϕ(w 2 ) 4-3. (B 0, 0 ) (ϕ(b 0 ), 2 ) z = ϕ(w) ϕ(b 0 ) = C [ 2, 2] w > 1 n 2(z) = n 2(ϕ(w)) = ϕ(w 2n ) ϕ(w 2n ) = w 2n + 1/w 2n w 2n 1/ w 2n w 2n 1 (n ). z B 2 C [ 2, 2] B 2 2 ([ 2, 2]) = [ 2, 2] z [ 2, 2] 2 n (z) [ 2, 2] n [ 2, 2] K 2 B 2 = C [ 2, 2] K 2 = [ 2, 2] B c K c 4-3 (1) B c (2) K c (3) c (B c ) = B c = 1 c (B c ) c (K c ) = K c = 1 (K c ) (3) (B c, c ) (K c, c ) ( 4-3). (1) z 0 B c m N m c (z 0 ) > 4 + c z m c (z) δ > 0 z z 0 < δ m c (z) m c (z 0 ) < 1 m c (z) 3 + c 2-4 z B c B c c

I 2012 04-3 (2) K c = C B c (1) K c 2-4 K c { z < 3 + c } n n c (z) = z C K c K c (3) 4-4. 4-3 (3). 4-4 B c B c E g : E C E E z 0 E z E g(z) g(z 0 ) z 0 E 4-4. B c 2 K c 4-3 U z 0 U c m (z 0 ) 3 + c m N E = Ū = U U g = c m E E = U K c c m ( E) K c z < 3 + c K c Kc IFS (revisited) 4-5 c > 2 z c (> 2) z B c.. c (z) z 2 c z 2 z = ( z 1) z ( c 1) z λ = c 1 > 1 c n (z) λ n z λ n c (n ). 0 0 c c c c 2 + c c (c 2 + c) 2 + c 8 1. z = c C := { z = c } c 1 (C) z = 0 8 U := { z < c } U 0 c 1 (U) U 1 U 1 U 2 8 U U U 0 U 1 I I 0 I 1 c : I 0 I c : I 1 I F 0 := ( c I 0 ) 1 : I I 0, F 1 := ( c I 1 ) 1 : I I 1 {F 0, F 1 } IFS

I 2012 04-4 r = r c (0, 1) i = 0, 1 x, y U d c (x, y) = c x y c 2 xy. d c (F i (x), F i (y)) rd c (x, y). 4-6. c > 2 (1) K c (2) Σ = {u 0 u 1 u i = 0 1} σ : Σ Σ σ(u 0 u 1 ) := u 1 u 2 ϕ c : Σ K c ϕ c σ = c ϕ c (Σ, σ) (K c, c ) Σ ϕ c Σ ϕ c 1 K c 0 B c M := {c C K c } 1: c = 2 + 2i IFS M 1 Σ u = u 1u 2..., v = v 1v 2..., d Σ(u, v) := n 1 Σ u n v n 2 n