di-problem.dvi

Similar documents
. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

0104.pages


0104.pages

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

(2000 )

fx-260A_Users Guide_J

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

no35.dvi

数学の基礎訓練I

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

29


( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

I

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

i

Chap10.dvi

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

6. Euler x

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


di-problem.dvi

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

untitled

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

function2.pdf

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

II


(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

Contents 1 Scilab

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ii-03.dvi

. p.1/15

A A p.1/16

I 1

Note.tex 2008/09/19( )

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

高等学校学習指導要領解説 数学編

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

1

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

70 : 20 : A B (20 ) (30 ) 50 1

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

untitled

( )

30 (11/04 )

n ( (

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

高等学校学習指導要領

高等学校学習指導要領

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 1 [1] ( 2,625 [2] ( 2, ( ) /

Transcription:

005/05/05 by. I : : : : : : : : : : : : : : : : : : : : : : : : :. II : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. III : : : : : : : : : : : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : : : 5 5. : : : : : : : : : : 6 6. : : : : : : : : : : : : : : : : : : : : : : : : 7 7. : : : : : : : : : : : : : : : : : : : : : : : : 8 8. : : : : : : : : : : : : : : : : : : : : : : : : 9 9. : : : : : : : : : : : : : : : : : : : : : : : : 0 0. : : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : : 3. (A): (B): (C):

. I a; b; c; : : :. x; y; z; : : :. (function) y x x y y = f (x) x y. a (m/sec) t x (m) x = at a t x x t f (t) =at x = f (t) x = x(t) x x(t) x. PV = nrt T P V P V P V (domain) x D, I interval. f (x) = p x [0; ).. (a; b) =fx j a<x<bg: [a; b) =fx j a» x<bg: (a; b] =fx j a<x» bg: [a; b] =fx j a» x» bg: (range) y = f (x) x y R, f (D), f (I) f (D) =ff (x) j x Dg :. f (x) =sinx I = R, f (I) =[ ; ]. R =( ; ). (A)

. II x y. y = x. x y. x = y. x = y = ±. x y. x = sin y. x =0 y = mß (m =0; ±; ±;:::). f x, x f :, x <x f (x ) <f(x ) f :, x <x f (x ) >f(x ) f :, f f :, x <x f (x )» f (x ) f :, x <x f (x ) f (x ). f (x) =x [0; ) ( ; 0]. [x] x Gauss [ß] =3,[0]= 0, [0:4]= 0, [ 0:]=. f (x) =[x] ( ; ) x>0 [x] x. (A) 3 3

3. III I f y f (I) f (x) = y x I y 7! x x f f (I). f x = f (y). y x.!! f (x) = f (x) f (x) y = f (x): f f (I), I. y = f (x) y = f (x) y = f (x) y = x.. y = f (x) =ax + b (a 6= 0) f (x) x = ay + b y y = f (x) = x b a.. f (f (x)) = f (f (x)) = x f (f (x)) = af (x) +b = a x b + b = x a f (f (x)) = f (x) b = ax + b b = x a a 3. (A) f (x) f (x) f (f (x)) = f (f (x)) = x 4

4. y = ax + b (a; b: a 6= 0) straight line y y = b y x x = b=a x x a b a =0 linear y = b 0 y x =0, y x = y = ax + bx + c (a; b; c: a 6= 0) 3 y = ax 3 + bx + cx + d (a; b; c, d: a 6= 0). n y = a n x n + a n x n + + a 0 (a 0 ;:::;a n : a n 6=0) 6 3 4 5 6. 4. (A) () x y 3 6 () 3 y = x, y =0:x, y =0:0x (3) 3 y = x, y =0x, y =00x (4) 3 y = x, y =(x ), y =(x +) (5) 3 y = x, y =(x ) +3, y =(x +) (6) 3 3 y = x 3, y = x(x ), y =(x )(x 3)(x +) 5. (A) () () (3) 3 5

5. f (x) g(x) y = g(x) f (x) f; g y = x x y 6. (A) a = ; ; y = a x a = ; ; y = a x 7. (B) a>0 y = a x y = x p a 8. (A) y = x y = y = a x a (a; p a 6= 0) x p 9. (A) y = x + y = a + q (a; q a 6= 0) x y = a x 0. (A) y = x 3 y = y = a x a + q (a; p; q a 6= 0) x p. y = x + x =+ 3 x x + x 0.. (A) y = x x ax + b y = ad bc 6= 0 (a; b; c; d c 6= 0) cx + d y = x 6

6. y = a x (a>0) a a x a n (n =; ;:::) a : =!!! y = a x a >, a =,0<a< y = a x y = x = a> 0 <a< 8 a x a y = a x+y >< a x =a y = a x y. a>0, b>0 (a x ) y = a xy (ab) x = a x b x >: (a=b) x = a x =b x b = a x y = a x = = b b x = b x. (A) y = e x y = e x 3. (A) () y = x, y =3 x, y =4 x () y = x, y =3 x, y =4 x 4. (A) a m n =( mp a ) n = mp a n p () a 3p a 4p a 3 () 3p a b 4 4p p q p 6 a b= ab 3 3 (3) a a 5. (A) 3, 3:, 3:4, 3:4, 3:45 ß 6. (A) () 4 x 5 x +4=0 () 9 x 3 x 3=0 (3) 4 x+ + x+ =0 7

7. y = a x (a 6= ;a > 0) x = a y (a 6= ;a > 0) y y = a x log a x a x x = a y, y =log a x (a 6= ;a > 0) y = a x x = a y x y y =log a x y = a x y = x y = log a x a> 0 <a< a = e log e x log e log, ln a =0 log 0 x 8 >< log a (xy) = log a x +log a y. a>0, a 6= log a (x=y) = log a x log a y >: log a x p = p log a x (p ) 7. (A) log a x 8. (A) () log a a p = p () log a a = (3) log a = 0 9. (A) 0. (A) : log b c = log a c (a; b; c > 0, a 6=,b 6= ) log a b. (A) a log a b = b (a; b > 0, a 6= ). (A) x [x] x Gauss. [ß] = 3, [99:99] = 99, m K(m) = [log 0 m]+ K(m) m m =00 K(00) = 3 00 () K(3), K(35), K(005), K(8899) [0] = 0. () log 0 =0:30 30 30 (3) K(m) m 3. (A) () log x =3 () log (x x) =3 (3) log x = (4) log x = 8

8. y = x a (a: ) a a a p x :3 ;x ß ;x ; np x 0: ;::: a x a x a = e a log x x>0 a =0 x 0 =(x>0) 0 0 = f (x) =x 0 x 0. y p = x = x. y = x (x 0) x 0, y 0.. y = 3p x = x 3. y = x 3 ( < x < ) <x<, <y<. 4. (A) () y = x (x 0) () y = x (x<0) (3) y = p x, y = p x, y = p x + p 9

9. x tan sin cos cos cos(ff + fi) =cosff cos fi sin ff sin fi: sin(ff + fi) =cos ( ß ff) +( fi) sin cos(ff fi) sin(ff + fi) =sinff cos fi +cosff sin fi: tan 3 sin cos. " cosec x = sin x ; sec x = cos x ; cot x = tan x 5. (A) sin cos tan 6. (A) tan sin, cos 7. (A) sin(nß), cos(nß), sin(n + )ß, cos(n + )ß 8. (A) t =tan x () sin x = t () cos x = t (3) tan x = t +t +t t 0

0. ( ) sinh x = ex e x ; cosh x = ex + e x ; tanh x = sinh x cosh x : (hyperbolic sine) (hyperbolic cosine) (hyperbolic tangent) e ix =cosx + i sin x sin x = eix e ix ; cos x = eix + e ix i i i " 9. (A) () x = cosh t, y =sinht () cosh x sinh x = x y = () tanh x =sech x x = cos t, y = sin t x + y = (3) sinh(x + y) =sinhxcosh y + cosh x sinh y (4) cosh(x + y) =coshxcosh y + sinh x sinh y III sech x == cosh x 30. (A) tanh(x + y) tanh x, tanh y 3. (B) sinh x ( <x<), cosh x (x 0), tanh x ( <x< ) arcsinh x, arccoshx, arctanh x arcsinh sinh arccosh; arctanh

. f (x) = sin x f (x +ß) =f (x) ß ß f (x + T )=f(x) f (x) T f (x) =sinx f ( x) = f (x). x; x 3 ;x 5 ;x 7 ;:::;sin x; tan x; sinh x; tanh x; : : : f (x) = cos x f ( x) =f (x). x ;x 4 ;x 6 ;x 8 ;:::;cos x; cosh x; : : : sin x cos x 3 3. (A) () () (3) (4) (5) (6) 33. (A) f (x) () f (x +)=f (x) () f (x +)=3f (x) (3) f (x) =f ( x) (4) f (x) = f ( x) (5) f (x + y) =f (x)f (y) (6) f (xy) =f (x) +f (y)

.. y = sin x [ ß ; ß ] [ ; ]. y = Arcsin x y = Arcsin x y = Sin x [ ; ], [ ß ; ß ] y [ ; ] y = sin x x x = arcsin y y = arcsin x [ ; ], ( ; ) y = arcsin x [ ß ; ß ] Arcsin x Arcsin x arcsin x x = sin y. y =cosx [0;ß] [ ; ]. y = Arccos x y = Arccos x [ ; ], [0;ß] y [ ; ] y =cosx x x = arccos y y = arccos x [ ; ], ( ; ) y = arccos x [0;ß] Arccos x Arccos x arccos x y = Cos x x = cos y. y =tanx ( ß ; ß ) ( ; ). y = Arctan x y = Arctan x y = Tan x ( ; ), ( ß ; ß ) y ( ; ) y = tan x x x = arctan y y = arctan x ( ; ), ( ß +nß; ß + nß) (n =0; ±; ±;:::) y = arctan x ( ß ; ß ) Arctan x Arctan x arctan x x = tan y. 38. arcsin; arccos; arctan 34. (A) p () arcsin 3 () arcsin( ) (3) arccos( ) (4) arccos 0 (5) arcsin( p ) 35. (B) () arccos(sin 6 5 ß) () arcsin(cos 4 5 ß) (3) arcsin(tan ) (4) tan(arcsin( p )) 3 5 36. (B) arcsin x + arccos x = ß 37. (C) () f (x) = arcsin(sin x) () g(x) = arccos(cos x) (3) h(x) = arctan(tan x) 38. (C) m =0; ±; ±;::: () arcsin x =( ) m Arcsin x + mß () arccos x =( ) m Arccos x + mß +( ( ) m ) ß (3) arctan x = Arctan x + mß 3