バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析―

Similar documents
ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

IMES Discussion Paper Series 98-J

II III II 1 III ( ) [2] [3] [1] 1 1:

03.Œk’ì

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

アジアの資本移動の変化に関するクラスター分析 アジア域内の証券投資活性化に向けて

IPRS_vol9_A4_fix.indd

text.dvi


PDFŠpŒ{ٶ

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

1 1 1 [2000]

わが国企業による資金調達方法の選択問題

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199


野村資本市場研究所|ベイルインの導入に向けた検討-破綻時に債権の損失吸収を図る新たな措置-(PDF)

untitled

23_02.dvi

untitled

†sŸ_ٶ†t„µŠlŁª(P2†`P24)/‘ã−C”s‡É‡¨‡¯‡éfiñ‘dŸJfiŁ”s‘ê‡Ì”À‘Ø„¤‰ƒ

43 2 PD DR Sommar and Shahnazarianka [19] Simons and Rolwes [17] GDP Figlewski, Frydman and Liang [7] GDP Bonfim [2] 3 Bhattacharjee et al. [1] 2002 [

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

財政赤字の経済分析:中長期的視点からの考察

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i


, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1



高齢化とマクロ投資比率―国際パネルデータを用いた分析―

PFI

OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br

082_rev2_utf8.pdf

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

waseda2010a-jukaiki1-main.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

OSIPP41_p1_2.eps

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

カルマンフィルターによるベータ推定( )


金融コングロマリットと範囲の経済:収益面の分析( )

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

国際流動性に関する財政的側面について

GDPギャップと潜在成長率

わが国のレポ市場について―理論的整理と実証分析―

headquarter Gertner et al. winner-picking Wal-Mart s

Z...QXD (Page 1)

さぬきの安全2016-cs5-出力.indd

看護学科案内'16/表紙

商学 60周年記念号/24.内田浩徳

スケーリング理論とはなにか? - --尺度を変えて見えること--

ISSN ISBN C3033 The Institute for Economic Studies Seijo University , Seijo, Setagaya Tokyo , Japan

Transcription:

aaaab aabab

VaR VaRArtzner et al. VaR VaR VaR Artzner et al.var VaR VaR VaR ρ XY ρ (X+Y ) ρ(x) + ρ(y ) XY ρ VaRArtzner et al.1999basak and Shapiro1999Danielsson2000Rootzén and Klüppelberg VaR VaR VaRVaR Artzner et al.1999kim and Mina 2000Ulmer20002000FISC VaR Rockafeller and Uryasev

VaR VaR VaR Artzner et alvar VaR VaR VaR VaR VaR VaR VaR

α quantile X α α expected shortfall conditional VaRmean excess lossbeyond VaRtail VaR Artzner et al. VaR Artzner et a α VaR α ( X ) X VaR α ( X ) = inf {x P[X x ]> α } inf {x A} Axinf {x P[X x ]> α }α VaR α VaR Artzner et al Fishburnt γ γ =1 t = VaR VaR t F γ (t) = (t x) γ df( x) γ > 0 F (x )x t γ Fishburn

X α VaRVaR α (X) ES α (X ) ES α (X ) = E [ X X VaR α (X)]. X α α VaR αvar α E [x B]B x VaR X X

VaR VaR αvar VaR VaR VaR VaR VaR Artzner et al. VaRVaR VaR VaR 2 [ t E X I { X VaR ( X )}] VaR ( X ) α 1 α ( ) dt ESα X = E [ X X VaR ( X ) ] t e 2 α = = σ 2 X α ασx 2π q 2 VaR α ( X ) 2 2 2 α VaR α ( X ) t 2 q α σ X 1 σ = e X σ 2 σ e 2 X 2σ 2 2 X 2 X = e 2 σ X = e 2σ X = σ X ασ X 2π α 2π α 2π α 2π x I {A} A q α α VaR

VaRVaR VaR VaRVaR VaR VaR VaR VaRVaR VaR VaR VaR VaR Artzner et al Artzner et al. XY σ X σ Y XY σ XY σ XY σ X σ Y X+Y σ X+Y σ 2 2 2 2 σ + σ + σ σ σ X Y X Y XY X σ = + + 2 σ + σ + 2 σ. X Y Y X Y VaREmbrechts et al.

AuU B lllu LU AA BBA VaRU VaRA u BVaRB l VaR ABL UVaR VaRAB u l VaRAVaRB u lvar ABVaRAVaRB VaR ST L 0.8% u 1,000+l 1,000+u+l L ST U 98.4% u l u+l UST 0.8% 1,000+u l 1,000+u+l VaR u l 1,000 u l uvar

100 99 VaR VaR VaR Artzner et al. 1997 Artzner et al.1999 Pflug VaR Artzner et al. VaR Pflug

VaR VaR VaR VaR VaR VaR A B A AB Rootzén and Klüppelberg

Artzner et alvar VaR VaRVaR VaRVaR VaR VaR VaR VaRBasak and Shapiro1999Klüppelberg and Korn 1998Lotz VaR VaR VaR B In estimating necessary levels of risk capital, the primary concern should be to address those disturbances that occasionally do stress institutional insolvencythe negative tail of the loss distribution that is so central to modern risk management. Greenspan2000 Basak and Shapiro VaR

VaR BIS VaR VaR VaR VaR Kp(K) i S i P i x u (W)u(W)=ln(W)E[u(W)] E.

E [u (W )] = P i. ln {W0 + x. e r. P (K ) x. max [K Si,0]}. W W 0 VaRα% VaR VaR maxe [u (W )]. {x,k} VaR maxe [u (W )], {x,k} subject to VaR 5 maxe [u (W )], {x,k} subject to 7 VaR maxe [u (W )], {x,k} subject to VaR 5 maxe [u (W )], {x,k} subject to 7 VaR VaR

VaR VaR VaR Ahn et al.var

VaR VaR VaR VaR VaRVaR 95%

A B AB n n n 100 C n AB n n n 100 C n A Bn n n C n m C n m n

E[ u( W)] = 100 n= 1 0.96 0.995 0.05 0.95 ln 1.0475 X 100 n= 1 0.04 0.995 0.05 0.95 0.96 0.005 0.05 0.95 ln 1.0475 X + 1.0075 X + 1.0075 0.1 X 0.04 0.005 0.05 0.95 1 1 n 2 + 1.055 X 100 0.9n ln 1.0475 0.1X1 + 1.0075 X 2+ 1.055 X + 1.0025 ( W 3 0 X1 X 2 X 100 100 n= 1 100 n= 1 n n n 100 n C 100 n 100 n C 100 n 100 n C 100 n 2 3 + 1.055 X 100 n C 100 n 100 0.9n + 1.0025 ( W0 X1 X 100 3 X 100 0.9n + 1.0025 ( W0 X1 X 3 100 2 X ) 100 0.9n ln 1.0475 0.1 X 1.055 1.0025. 1+ 1.0075 0.1 X + X 2 3 + 100 ( W0 X1 X ) 2 X 3 W W X A X B X 2 3 3 ) ) VaR VaR VaR VaR VaR max E [u (W )]. {X 1,X 2,X 3 } VaR max E [u (W )], subject to {X 1,X 2,X 3 } VaR 3

max E [u (W )], {X 1,X 2,X 3 } subject to 3.5 VaR max E [u (W )], subject to {X 1,X 2,X 3 } VaR 3 max E [u (W )], subject to 3.5 {X 1,X 2,X 3 } VaR A VaR A VaRVaR AVaR A VaRA VaR VaR VaR A B BVaR VaR

VaR VaR B VaR VaR VaR VaR VaR Basak and ShapiroBasak and Shapiro Basak and Shapiro VaRVaR t =0W ( 0 ) t = T W (T ) W (T )u (W (T)) = lnw (T ) BS Basak and Shapiro

db (t) = B (t)rdt, ds(t) = S(t)[ µdt+σdw(t)], w ( t ) rµσ ξ ( t ) 2 1 µ r µ r ξ ( t) exp r + t w( t) 2 σ σ. E [ξ ( T ) W ( T )] W ( 0 ). ξ ( T ) max E [lnw (T )] W ( T ) subject to E [ξ ( T ) W ( T )] W ( 0 ). W ( 0 ) W ( T ) =. ξ ( T ) W ( T ) W ( 0 ) W ( 0 ) W ( T ) = = = A 1.W (0). S (T ) µ r σ, ξ ( T ) A. S( T ) µ r σ A>0 T T

W(T) T T W(T) = A 1 µ r W(0) S(T ) σ S(T) VaR VaR 1 α %VaRVaRα P(W (0) W ( T ) VaR (α)) 1 α. VaRVaR Capital VaR (α) Capital, W (0) CapitalW W T VaR (α) W (0) W,

P(W (T ) W ) 1 α, α% VaR VaR max E [u (W (T ))], W ( T ) subject to E [ξ ( T ) W ( T )] W ( 0 ), P (W ( T ) W ) 1 α. VaR W W W W(T) W(T) W W W(T) α α S α S S(T) T T

VaR η W E [W(0) W ( T ) W ( T ) W ] η. ε η W(0) +W E [ W W ( T ) W ( T ) W ] ε. W W W ( T ) ε Baaaa E [ξ ( T ) ( W W ( T ))1 {W ( T ) W }] ε. E [ξ ( T ) ( W W ( T ))1 {W ( T ) W }] = E [ξ ( T ) ( W W ( T )) W ( T ) W ] P(W (T) W ), W W ( T ) ξ ( T ) W ( T )W P(W (T) W ) Basak and ShapiroVaR VaR W = W(0) VaR(α)VaR(α) W(0) VaR(α) W A A

W(T) W (T) W(T ) W T T S T max E [u (W (T ))], W ( T ) subject to E [ξ ( T ) W ( T )] W ( 0 ), E [ξ ( T ) (W W ( T ))1 {W ( T ) W }] ε. VaR

VaR VaRVaR VaR VaR α α

VaR VaR VaRVaR VaR VaR VaR VaR VaR VaR a auryasev VaR VaR VaR

VaR VaRVaR VaR VaR VaR extreme value theory NeftciScaillet

VaR VaR VaR VaR VaR VaR VaR VaR VaR VaRVaR VaR VaRVaR

VaR VaR B VaR VaR VaR VaR VaR

VaR Credit Suisse Financial ProductsVaR quantified using scenario analysis and controlled with concentration limits VaRVaR VaR VaR VaRVaR VaR VaR

VaR VaRVaR VaR VaR VaR

B Ahn, D, J. Boudoukh, and M. Richardson, Optimal Risk Management Using Options, Journal of Finance, Vol. 54, No. 1, February 1999, pp. 359-375. Artzner, P., F. Delbaen, J. M. Eber, and D. Heath, Thinking Coherently, Risk, Vol. 10, No. 11, November 1997, pp. 68-71., and, Coherent Measures of Risk, Mathematical Finance, Vol. 9, No. 3, July 1999, pp. 203-228. Basak, S., and A. Shapiro, Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices, working paper, The Rodney White Center for Financial Research, 1999. Credit Suisse Financial Products, Credit Risk + : A Credit Risk Management Framework, 1997. Danielsson, J., The Emperor has no Clothes: Limits to Risk Modelling, Working Paper Series W00:04, Institute of Economic Studies, University of Iceland, June 2000. Embrechts, P., A. McNeil, and D. Straumann Correlation and Dependency in Risk Management: Properties and Pitfalls, Preprint, ETH Zürich, 1999. Fishburn, P. C., Mean-Risk Analysis with Risk Associated with Below-Target Returns, American Economics Review, Vol. 67, No. 2, March 1977, pp. 116-126. Greenspan, A., Remarks at the 36 th Annual Conference on Bank Structure and Competition, Federal Reserve Bank of Chicago, 2000. Kim, J., and J. Mina, RiskGrades Technical Document, RiskMetrics Group, May 2000. Klüppelberg, C. and R. Korn, Optimal Portfolios with Bounded Value-at-Risk, Working Paper, Munich University of Technology, 1998. Lotz, C. M. J., Optimal Shortfall Hedging of Credit Risk, Working Paper, Faculty of Economics, University of Bonn, 1999. Neftci, S. N., Value at Risk Calculations, Extreme Events, and Tail Estimation, Journal of Derivatives, Spring 2000. Pflug, G. C., Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk, Probabilistic Optimization: Methodology and Applications, Kluwer Academic Publishers, 2000, pp. 278-287.

Rockafeller R. T. and S. Uryasev, Optimization of Conditional Value-at-Risk, Journal of Risk, Vol. 2, No. 3, Spring 2000, pp. 21-41. Rootzén, H., and C. Klüppelberg, A Single Number Can t Hedge Against Economic Catastrophes, Working Paper, Munich University of Technology, 1999. Scaillet, O., Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall, Working Paper, IRES, 2000. Ulmer, A., Picture of Risk, RiskMetrics Group, 2000.