製造業における熟練労働への需要シフト:

Similar documents
日本経済の情報化と生産性に関する米国との比較分析

日本内科学会雑誌第102巻第4号

(Information Technology )

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

Bvarate Probt Model 0.24% 0.4% 5.%.% %.% Keyword Bvarate Probt Model 6- TEL & FAX: E-mal:

nsg02-13/ky045059301600033210

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

tnbp59-21_Web:P2/ky132379509610002944


研修コーナー

パーキンソン病治療ガイドライン2002

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

II III II 1 III ( ) [2] [3] [1] 1 1:

meiji_resume_1.PDF

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

本文/目次(裏白)

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

財政赤字の経済分析:中長期的視点からの考察

shuron.dvi

ウェーブレットによる経済分析

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

低費用航空会社による運賃競争の時間効果とスピルオーバー効果の計測:米国内複占市場のケース

Part () () Γ Part ,

産業・企業レベルデータで見た日本の経済成長.pdf

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1. 2. (Rowthorn, 2014) / 39 1

陦ィ邏・2

橡紙目次第1章1

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

KEIRIN

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

液晶の物理1:連続体理論(弾性,粘性)

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

日本の教育経済学:実証分析の展望と課題.pdf

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

(2005a) (2005) ( ) (2004) (2003) 3 (2003) (2003) 2

limit&derivative

通勤混雑と家賃関数*

.....Z...^.[ \..

30

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

プログラム

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

第86回日本感染症学会総会学術集会後抄録(I)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

「国債の金利推定モデルに関する研究会」報告書

遺産相続、学歴及び退職金の決定要因に関する実証分析 『家族関係、就労、退職金及び教育・資産の世代間移転に関する世帯アンケート調査』

構造と連続体の力学基礎

all.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Transcription:

* htosh.sasak@boj.or.j ** kench.sakura@boj.or.j No.04-J-17 2004 12 103-8660 30 * **

* 2004 12 1988 2003 * e-mal: htosh.sasak@boj.or.j e-mal: kench.sakura@boj.or.j 1

1. 1980 1990 1 skll-based technologcal change SBTC SBTC IT SBTC SBTC SBTC SBTC 1 Freeman and Katz[1994] 2

2 Sakura[2001] IT 3 [2000] ead and Res[2000] 1980 1990 SBTC Ito and Fukao[2004] 2000 SBTC IT SBTC SBTC 1990 2000 SBTC 2 Berman et al.[1994]autor et al.[1998] SBTC Sachs and Shatz[1994] Wood[1994]Bernard and Jensen[1997]Feenstra and anson[1996a, 1996b, 1999] SBTC 3 [2004] Sakura[2001] 3

4 5 2 SBTC 3 4 1988 2003 SBTC 5 2. SBTC L 4 2003 4 2 1 2002 6.5% 10.4% 2 2004 3 5 1990 2003 10% 50% 4

w w L 1(1) y y A 0 0 w L / w / L SBTC 1(2) SBTC y y y y 0 0 1 1 6 B A B / L< / L w L / w > w L / w B A 7 w w < ( wl L + w ) ( w L L + w ) 144 243 4 144 2443 A B ( / L) ( / L ) < ( wl / w ) + ( / L) ( w L / w ) + ( / L ) SBTC SBTC 6 7 5

8 SBTC 3. SBTC 3.1 1985 3.2 SBTC 8 1 1 Feenstra and anson[1996a] 6

3.1 Mncer[1974] lnw 2 = α + β t + γ 1K + γ 2K (3-1) lnw t K α β γ 1 γ 2 (3-1) 17 9 10 1985 1990 1995 2000 2003 (3-2) Weghted Least Squares 11 ln( wage ) = a + = b ( g g kn 2 1 ) g 3 Dh 2 Ej 16 h h D + e j j D + = 1 = 1 k = 1 Fk + d f k D + u (3-2) ln( wage ) / kn ) D Dh Ej Fk D D a ( 9 17 10 17 920 65 4 3 1,836 11 [2004] (3-2) 1985 2000 7

bg d h e j f k u 3 Dh D D D D D1 D2 D3 1 0 1 0 1 0 Ej D D D E1 E 2 1 0 1 0 Fk D 16 (3-2) (3-2) 2 dˆ ˆ 1 d 3 12 1985 2003 3 1985 2003 12 2 ˆb 1 ˆb 2 8

3.2 1985 3.1 4(1) 1985 2000 1985 2003 0.60 1980 1996 0.74% 13 (2) 3.1 14 (3-3) 13 Autor et al.[1998] 1980 1990 0.908% 1990 1996 0.452% 14 Berman et al.[1994] 9

s = n s = 1 142 43 + n s = 1 142 43 (3-3) = 1,, n : n = 17 s = W / W : s = W / W : = W / W : % 2 W W W W (3-3) SBTC SBTC (3-3) 5(1) 1985 90% 10% 1985 2003 5(2) 10

SBTC 4. SBTC 4.1 Berman et al.[1994] K L 15 SBTC 15 [2004] IT IT 11

Z V C V ln C = α 0 + α ln w + α K ln K + α Y lny + α Z ln Z + α t t + 0.5( α YK KK ln K 2 + α ty YY lny 2 + α YZ ZZ ln Z 2 + α t tt 2 tk + q γ q KZ ln w ln w + α lny ln K + α t lny + α lny ln Z + α t ln K + α ln K ln Z + α t ln Z + Y K Z ρ lny ln w + ρ ln K ln w + ρ ln Z ln w + q ) t tz ρ t ln w (4-1) w t (4-1) w ln lnc ln w V = w d V C = s Y K Z q t = α + ρ lny + ρ ln K + ρ ln Z + γ ln w + ρ t q q (4-2) d w (4-1) w (4-3) 16 Y K Z t = γ q = ρ = ρ = ρ = ρ = γ and q 0 q α =1 (4-3) (4-2) Y ρ ρ = 0 (4-4) + K 16 γ q = γ q 12

L (4-1) w w (4-2) (4-3) (4-4) s w K = α + γ ln ( ) + µ ln ( ) + λ ln Z + δ t (4-5) L w Y s L w /( w + w L ) L ln( w / w ) ln( K / Y ) ln α γ µ λ δ Z 2 SBTC (4-5) (4-1) (4-5) Berman et al.[1994] 1988 2003 14 17 17 14 13

18 (4-5) s t K = α + µ ln ( ) t + λz t + α + φ t + ε t (4-6) Y t s t α µ λ α φ ε t dosyncratc shock (4-6) Zt SBTC M t Ft 19 SBTC IT IT 2000 20 Rt t 18 Ito and Fukao[2004] 1988 2000 35 14 16 224 19 13 20 [2003] JIP 1998 3 2000 34(1) 2000 SBTC 14

λ (4-6 ) (4-6 ) s s t t K M R = α + µ ln ( ) t + λ M t + λ R t + α + φ t + ε t (4-6 ) Y K F R = α + µ ln ( ) t + λ F t + λ R t + α + φ t + ε t (4-6 ) Y (4-6) µ λ SBTC SBTC 21 (4-6) (4-6) α fxed effects model random 21 Wood[1994] SBTC defensve nnovaton Lawrence[2000] SBTC SBTCautonomous nnovaton 15

effects model (4-6) φ t 22 NL (4-6) 23 strct exogenety (4-6) E[ ε α X α φ ] = 0 for all and u ( u = { 1, 2, L, t, L, T } ) t u t t ε t E[ ] X (4-6) ( ) u = ln( K u / Y u Z u X ), u (4-6) X 24 (4-6) t t W t s s X t 22 F 23 (4-6) ad hoc 24 Wooldrdge[2002],. 285 16

s t = α + Φ X + Ψ W + α + φ + ε (4-7) t s t t Φ Ψ (4-7) W s 0 : Ψ = 0 F X t 25 W s t 1 Wt 1 W t + 1 (4-6) (4-5) L ln ( wt / wt ) omtted varable (4-6) εt (4-6) εt 26 AR(1) 4.2 27 25 s < t (4-6) t ε t ( t s) s > t (4-6) t ( s t) 26 effcent Frst Dfferenced Model 27 17

1988 2003 28 st 100 Kt 30 2003 2002 Yt 30 2003 2002 M t 100 29 Ft 100 Rt 100 NLt 1005 2002 28 1988 1988 29 18

L ( wt / wt ) 6 (1) 0.30 0.67 SBTC 0.04 0.42 1990 7 SBTC 4.3 8(1) M t Ft SBTC Rt (1) (5) NLt (6) (7) 9 SBTC ln( K / Y ) t 8(1) AR(1) 19

(3) 30 F (4-7) 1 W t 1 W t + 1 31 8(2) (4-6) L ln( w t / wt ) omtted varable 8(1) (8) (9) (4-6) AR(1) SBTC 8(3) 8(1) SBTC 0.70.8 30 Sakura[2001] [2004] ead and Res[2000] Berman et al.[1994] Feenstra and anson[1996a, 1996b, 1999] Bernard and Jensen[1997]Autor et al.[1998] Goldn and Katz[1998] 31 8(2) 2 3 20

0.2 0.060.1 1988 2003 32 0.05% 0.31% 0.75% 0.2 0.31 <0.060.1> 0.75 <0.70.8> 0.05 0.56% 10.8 12.7% 8.7 13.7 5.5 6.6% SBTC 2 SBTC SBTC Feenstra and anson[1999] 1979 1990 11.0 15.2% SBTC 7.6 13.3% 33 1988 32 6(1) 33 Feenstra and anson[1999] SBTC 31.5% 21

SBTC 5. SBTC 1985 SBTC 14 SBTC SBTC SBTC SBTC 22

34 34 1990 [2004] 23

M t 19 2000 A) 2000 1988 B) A) 100 C) 2000 =100 30 2003 2002 D) A) 2000 =100 5 2000 24

E) B) 2000 D) C) 2000 25

Autor, D.., L. F. Katz, and A. B. Krueger[1998], Comutng nequalty: ave comuters changed the labor market?, Quarterly Journal of Economcs, 113, 1169-213. Berman, E., J. Bound, and Z. Grlches[1994], Changes n the demand for sklled labor wthn U.S. manufacturng: Evdence from the Annual Survey of Manufactures, Quarterly Journal of Economcs, 104, 367-97. Bernard, A. B., and J. B. Jensen[1995], Exorters, skll ugradng, and the wage ga, Journal of Internatonal Economcs, 42, 3-31. Feenstra, R. C., and G.. anson[1996a], Foregn nvestment, outsourcng and relatve wages, n R. C. Feenstra, G.M. Grossman and D. A. Irwn (ed.) The Poltcal Economy of Trade Polcy: Paers n onor of Jagdsh Bhagwat, Cambrdge, MA: MIT ress, 89-127. Feenstra, R. C., and G.. anson[1996b], Globalzaton, outsourcng, and wage nequalty, Amercan Economc Revews, 86, 240-45. Feenstra, R. C., and G.. anson[1999], The mact of outsourcng and hgh-technology catal on wages: Estmates for the U.S., 1979-1990, Quarterly Journal of Economcs, 114, 907-40. Freeman, R. B., and L. F. Katz[1994], Rsng wage nequalty: the Unted States vs. other advanced countres, n R. B. Freeman (ed.) Workng under Dfferent Rules, New York, NY: Russell Sage Foundaton, 29-62. Goldn, C., and L. F. Katz[1998], The orgns of technology-skll comlementarty, Quarterly Journal of Economcs, 113, 693-732. ead, K., and J. Res[2000], Offshore roducton and skll ugradng by Jaanese manufacturng frms, Journal of Internatonal Economcs, 58, 81-106. Ito, K., and K. Fukao[2004], Physcal and human catal deeenng and new trade atterns n Jaan, NBER Workng Paer 10209. Lawrence, R.[2000], Does a kck n the ants get you gong or does t just hurt? The mact of nternatonal cometton on technologcal change n U.S. manufacturng, n R. C. Feenstra (ed.) The Imact of Internatonal Trade on 26

Wages, Chcago: Unversty of Chcago ress, 197-219. Mncer, J.[1974], Schoolng, Exerence, and Earnngs, New York, NBER. Sachs, J.D., and. J. Shatz[1994], Trade and jobs n U.S. manufacturng, Brookngs Paers on Economc Actvty, 1, 1-84. Sakura, K.[2001], Based technologcal change and Jaanese manufacturng emloyment, Journal of the Jaanese and Internatonal Economcs, 15, 298-322. Wood, A.[1994], North-South Trade, Emloyment and Inequalty, Changng Fortunes n a Skll-Drven World, Oxford: Clarendon ress. Wooldrdge, J. M.[2002], Econometrc Analyss of Cross Secton and Panel Data, Cambrdge, MA: MIT ress. [2004] 23 1 [2000] Vol.21-2 [2004] Vol.25-1 [2004] [2003] 1970-98 170 27

SBTC SBTC y 0 A y 0 O ( / L) ( w L / w ) L SBTC y 0 y 1 A B y 0 y 1 O ( / L) ( / L ) ( w L / w ) ( w L / w ) L

1985 1990 1995 2000 2003 0.068 ( 23.85 ) 0.063 ( 27.35 ) 0.061 ( 32.89 ) 0.057 ( 33.75 ) 0.057 ( 40.65 ) 2-0.001 ( -11.53 ) -0.001 ( -12.45 ) -0.001 ( -15.05 ) -0.001 ( -17.06 ) -0.001 ( -21.66 ) 0.396 ( 28.04 ) 0.436 ( 29.55 ) 0.435 ( 32.27 ) 0.441 ( 32.74 ) 0.470 ( 29.25 ) 0.235 ( 15.26 ) 0.276 ( 21.90 ) 0.268 ( 21.01 ) 0.258 ( 16.68 ) 0.260 ( 15.94 ) 0.139 ( 17.16 ) 0.158 ( 17.37 ) 0.159 ( 16.13 ) 0.149 ( 15.57 ) 0.154 ( 11.22 ) 0.035 ( 2.89 ) 0.034 ( 3.15 ) -0.007 ( -0.72 ) 0.045 ( 5.58 ) 0.119 ( 13.26 ) -0.051 ( -5.19 ) -0.041 ( -5.03 ) -0.073 ( -8.75 ) -0.074 ( -9.29 ) -0.043 ( -4.88 ) -0.049 ( -3.28 ) -0.075 ( -5.54 ) -0.102 ( -7.77 ) -0.078 ( -4.30 ) -0.097 ( -6.23 ) 0.060 ( 2.99 ) 0.015 ( 0.96 ) -0.062 ( -4.25 ) -0.030 ( -1.81 ) -0.047 ( -2.34 ) -0.217 ( -7.75 ) -0.148 ( -5.27 ) -0.105 ( -2.82 ) -0.035 ( -1.81 ) -0.041 ( -2.17 ) -0.036 ( -1.95 ) -0.011 ( -0.59 ) -0.068 ( -4.42 ) -0.063 ( -4.35 ) -0.039 ( -2.29 ) 0.007 ( 0.54 ) 0.029 ( 2.04 ) 0.000 ( 0.03 ) 0.022 ( 1.43 ) 0.029 ( 2.02 ) 0.115 ( 5.56 ) 0.124 ( 9.32 ) 0.104 ( 7.55 ) 0.085 ( 5.41 ) 0.103 ( 6.82 ) 0.090 ( 6.61 ) 0.128 ( 9.83 ) 0.112 ( 9.42 ) 0.096 ( 6.70 ) 0.106 ( 5.89 ) 0.098 ( 6.43 ) 0.078 ( 5.84 ) 0.003 ( 0.25 ) 0.000 ( 0.02 ) -0.015 ( -0.64 ) 0.015 ( 0.87 ) 0.021 ( 1.49 ) 0.010 ( 0.61 ) 0.036 ( 2.57 ) 0.014 ( 0.93 ) 0.083 ( 6.01 ) 0.039 ( 2.98 ) -0.011 ( -0.60 ) -0.014 ( -0.70 ) -0.017 ( -0.83 ) 0.012 ( 0.71 ) 0.023 ( 1.69 ) -0.008 ( -0.55 ) 0.012 ( 0.89 ) 0.013 ( 0.68 ) 0.059 ( 3.82 ) 0.096 ( 7.44 ) 0.037 ( 3.12 ) 0.049 ( 3.27 ) 0.040 ( 2.70 ) 0.029 ( 2.20 ) 0.057 ( 5.17 ) 0.026 ( 2.53 ) 0.024 ( 2.07 ) 0.018 ( 1.41 ) 0.056 ( 4.01 ) 0.073 ( 6.69 ) 0.046 ( 4.73 ) 0.055 ( 4.88 ) 0.061 ( 4.89 ) 0.087 ( 5.55 ) 0.100 ( 7.78 ) 0.025 ( 2.21 ) 0.024 ( 2.00 ) 0.022 ( 1.78 ) 0.061 ( 4.26 ) 0.065 ( 5.54 ) 0.037 ( 4.11 ) 0.033 ( 2.79 ) 0.002 ( 0.10 ) -0.606 ( -25.00 ) -0.479 ( -21.93 ) -0.274 ( -14.40 ) -0.230 ( -12.55 ) -0.282 ( -14.34 ) R 2 S.E. 0.983 0.100 0.990 0.094 0.994 0.095 0.995 0.093 0.996 0.097 1802 1801 1780 1776 1774 WLS eteroskedastcty-consstent standard errorscses t 17 16

0.24 0.22 0.20 0.18 0.16 0.14 1985 1990 1995 2000 2003 0.34 0.32 0.30 0.28 0.26 0.24 1985 1990 1995 2000 2003 0.48 0.46 0.44 0.42 0.40 0.38 1985 1990 1995 2000 2003 0.11,105/

85 90 95 00 0385-9090-9595-0000-0385-03 0.209 0.236 0.269 0.296 0.317 0.538 0.653 0.539 0.716 0.600 17 85 90 95 00 0385-9090-9595-0000-0385-03 0.200 0.231 0.235 0.259 0.301 0.619 0.074 0.472 1.396 0.556 0.127 0.155 0.184 0.238 0.227 0.551 0.585 1.084-0.369 0.555 0.204 0.215 0.240 0.263 0.281 0.227 0.483 0.465 0.597 0.426 0.080 0.080 0.112 0.167 0.172 0.007 0.625 1.099 0.176 0.510 0.111 0.108 0.137 0.160 0.205-0.067 0.570 0.466 1.502 0.520 0.151 0.186 0.179 0.209 0.210 0.700-0.150 0.619 0.026 0.329 0.353 0.359 0.376 0.436 0.441 0.128 0.333 1.195 0.169 0.488 0.340 0.381 0.406 0.414 0.421 0.824 0.493 0.172 0.226 0.451 0.168 0.186 0.212 0.244 0.264 0.368 0.511 0.651 0.655 0.534 0.115 0.158 0.154 0.179 0.219 0.872-0.083 0.489 1.349 0.580 0.135 0.165 0.188 0.199 0.204 0.606 0.465 0.220 0.147 0.383 0.204 0.217 0.257 0.280 0.288 0.268 0.802 0.449 0.285 0.470 0.133 0.146 0.187 0.196 0.210 0.275 0.809 0.186 0.444 0.427 0.212 0.234 0.271 0.280 0.306 0.438 0.739 0.173 0.859 0.518 0.273 0.298 0.347 0.377 0.407 0.498 0.966 0.614 0.983 0.741 0.167 0.181 0.217 0.237 0.245 0.280 0.725 0.395 0.285 0.436 0.254 0.298 0.328 0.373 0.416 0.895 0.599 0.896 1.414 0.900 17

85-90 90-95 95-00 00-03 85-03 0.471 0.596 0.483 0.673 0.538 (87.6%) (91.3%) (89.6%) (94.0%) (89.7%) 0.066 0.057 0.056 0.043 0.062 (12.4%) (8.7%) (10.4%) (6.0%) (10.3%) 0.538 0.653 0.539 0.716 0.600 17

1985 2003 0.538 0.043 0.013 0.005 0.007 0.007 0.009 0.030 0.035 0.009 0.025 0.020 0.011 0.029 0.066 0.139 0.063 0.026 <100.0%> <8.0%> <2.4%> <0.9%> <1.3%> <1.3%> <1.7%> <5.6%> <6.5%> <1.7%> <4.7%> <3.7%> <2.0%> <5.4%> <12.3%> <25.8%> <11.8%> <4.8%> 0.062 0.007-0.020-0.007-0.003-0.005 0.000 0.015-0.003-0.002-0.008-0.028-0.004-0.003 0.001 0.101 0.020 0.003 <100.0%> <11.3%> <-32.0%> <-11.5%> <-5.1%> <-8.8%> <-0.1%> <23.9%> <-4.9%> <-3.7%> <-13.7%> <-46.0%> <-6.4%> <-4.8%> <1.1%> <163.6%> <32.9%> <4.3%> 0.600 0.050-0.007-0.002 0.004 0.002 0.009 0.045 0.032 0.007 0.017-0.008 0.007 0.026 0.067 0.240 0.084 0.028

L s t ln( K t / Y ) M t F t Rt NL ln( w / ) t t w t t 25.638 3.507 3.510 7.974 2.908 22.329 1.257 8.409 0.401 4.998 5.869 1.736 2.051 0.043 13.076 2.653 0.031 0.520 0.626 18.992 1.152 45.536 4.442 31.770 25.900 7.770 25.247 1.379 0.540 0.025 0.300 0.672 0.042 0.417 0.001 0.556 0.013 0.313 0.747 0.046 0.417 0.001 1.436 0.096 0.714 1.845 0.272 0.116 0.027 s t ln( K t / Y M t F t R t t ) NL t L ln( w t / w ) t s t L ln( K / Y ) M R NL ln( w t / w ) t t t F t 1.000-0.280 1.000 0.003 0.003 1.000 0.483-0.212 0.542 1.000 0.510-0.358 0.083 0.608 1.000 0.302 0.353 0.270 0.541 0.096 1.000-0.073 0.353 0.032-0.123-0.282-0.003 1.000 t t t 14 1988 2003 13

SBTC SBTC 50 40 30 20 10 1990 50 40 30 20 10 1995 0 0 2 4 6 8 10 0 0 2 4 6 8 10 2000 2003 50 40 30 20 50 40 30 20 10 10 0 0 2 4 6 8 10 0 0 2 4 6 8 10

50 40 30 20 10 1990 50 40 30 20 10 1995 0 0 5 10 15 20 0 0 5 10 15 20 2000 2003 50 40 30 20 50 40 30 20 10 10 0 0 5 10 15 20 0 0 5 10 15 20

1988 2003 s t (1) (2) (3) (4) (5) (6) (7) (8) (9) ln( K / Y ) t -1.758 *** -3.045 *** -3.087 *** -1.878 *** -3.349 *** -1.592 *** -2.831 *** -1.713 *** -2.840 *** (0.530) (0.487) (0.454) (0.526) (0.489) (0.490) (0.466) (0.450) (0.475) M 0.229 *** t 0.214 *** 0.214 *** 0.194 *** (0.052) (0.052) (0.051) (0.044) ln( F t SBTC R t NL t L w / w ) t 0.102 *** 0.065 * 0.088 ** 0.067 * (0.039) (0.040) (0.040) (0.038) 0.805 *** 0.668 *** 0.761 *** 0.727 *** 0.704 *** 0.652 *** 0.695 *** (0.289) (0.280) (0.264) (0.250) (0.244) (0.239) (0.250) 1.166 *** 1.147 *** (0.060) (0.083) 34.263 *** 24.317 *** (4.058) (5.176) const. 32.814 *** 35.958 *** 35.089 *** 30.940 *** 34.536 *** 2.358 22.816 *** 27.658 *** (1.854) (1.832) (1.790) (1.993) (1.862) (2.224) (1.957) (2.290) S.E. 1.11 1.00 1.14 1.10 0.98 1.11 1.01 0.94 0.93 F 425.4 464.4 402.1 421.9 467.6 758.8 819.4 560.6 507.1 ausman-test 1060.0 3266.4 1430.4 1519.5 1411.5 4.9 16.2 2321.2 1485.5 P (0.00) (0.00) (0.00) (0.00) (0.00) (0.30) (0.00) (0.00) (0.00) Number of obs. 224 208 224 224 208 224 208 224 208 ****** 1510% secfcaton-test FGLSFeasble Generalsed Least Squares (2)(5)(7)(9) 13

s t = α + Φ X + Ψ W + α + φ + ε t s t t (4-7) W s 0 : Ψ = 0 F P W s W = t +1 ln( K / Y ) + t 1 ln( K / Y ) + t 1 M t +1 R t + 1 F t +1 R t +1 M t +1 R t +1 F t +1 R t +1 1.019 (0.385) 0.748 (0.525) 1.112 (0.331) 0.973 (0.380) W W s = t 1 ln( K / Y ) ln( K / Y ) t 1 t 1 M t 1 R t 1 F t 1 M t 1 F t 1 R t 1 R t 1 R t 1 0.739 (0.530) 0.991 (0.399) 1.074 (0.344) 1.332 (0.267) AR(1) 1988 2003 (1)' (2)' (3)' (4)' (5)' (6)' (7)' ln( K / Y ) t -1.028-1.567-1.372-1.022-1.622-0.814-1.333 (0.965) (1.267) (0.975) (0.954) (1.254) (0.753) (0.925) M 0.198 *** t 0.182 *** 0.174 *** (0.055) (0.055) (0.054) F t SBTC R t NLt 0.061 0.040 0.081 * (0.048) (0.048) (0.048) 0.876 *** 0.732 ** 0.742 *** 0.873 *** 0.665 *** (0.334) (0.328) (0.342) (0.299) (0.334) 1.108 *** 1.116 *** (0.093) (0.139) S.E. 1.19 1.14 1.21 1.18 1.13 1.20 1.17 F 173.8 67.2 168.0 171.9 66.5 298.0 111.6 Number of obs. 210 195 210 210 195 210 195 s t ****** 1510% FGLS F Ψ = 0 AR(1) (1)' (5)'

16 18 20 22 24 26 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003-6 -4-2 0 2 4 6 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 8(1) (1)(5)