<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi


<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

Microsoft Word - 章末問題

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4‐E ) キュリー温度を利用した消磁:熱消磁

TOP URL 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

newmain.dvi

( ) ,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

all.dvi

Note.tex 2008/09/19( )

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gmech08.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

TOP URL 1

30

LLG-R8.Nisus.pdf

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

QMII_10.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq



<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

chap9.dvi

i

QMI_10.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

all.dvi

pdf


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

地盤環境振動の対策技術-00-前付.indd

『共形場理論』


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

TOP URL 1

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

meiji_resume_1.PDF

Gmech08.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

AccessflÌfl—−ÇŠš1

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

ii

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

untitled

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

TOP URL 1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s



2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

untitled

i

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Mott散乱によるParity対称性の破れを検証

The Physics of Atmospheres CAPTER :

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

sec13.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Transcription:

スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです.

i 1 2

ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance effect) 5 TMR (tunnel magnetoresistance effect) TMR 2005 6 HDD (hard disk drive) MRAM (magnetoresistive random access memory) 2011 7 2013 1

iii 1 1 1.1 1 1.2 3 4 2 5 2.1 5 2.1.1 5 2.1.2 8 2.1.2.1 10 2.1.2.2 12 2.2 15 2.2.1 16 2.2.2 20 2.2.3 24 2.2.4 26 2.2.5 29 2.2.6 3d 35 2.2.7 41 2.2.8 43 2.2.9 45 2.2.10 48 2.2.11 T 3/2 50 2.2.12 51 2.2.13 53 2.3 56 2.3.1 57

iv 2.3.2 1 59 2.3.2.1 59 2.3.2.2 63 2.3.3 65 2.3.3.1 66 2.3.3.2 67 2.3.3.3 68 2.3.3.4 69 2.3.4 71 2.3.5 72 2.4 73 2.4.1 73 2.4.2 75 77 3 79 3.1 79 3.1.1 79 3.1.1.1 80 3.1.1.2 82 3.1.1.3 83 3.1.2 86 3.1.2.1 88 3.1.2.2 89 3.1.3 91 3.1.3.1 92 3.1.3.2 93 3.1.3.3 Fe-Co-Ni 95 3.1.3.4 97 3.1.3.5 99 3.1.3.6 104 3.2 107

v 3.2.1 107 3.2.2 110 3.2.2.1 110 3.2.2.2 111 3.2.2.3 112 3.2.3 113 3.2.3.1 114 3.2.3.2 117 3.2.3.3 117 3.3 118 3.3.1 118 3.3.2 119 3.3.2.1 119 3.3.2.2 120 3.3.3 120 122 4 124 4.1 124 4.2 125 4.2.1 125 4.2.2 127 4.2.3 127 4.2.4 128 4.2.5 129 4.2.6 ρ, ρ, α = ρ /ρ 130 4.3 132 4.4 133 4.5 136 4.6 140 4.7 142 147

vi 5 149 5.1 149 5.2 151 5.3 TMR 153 5.4 TMR, AMR PHE 154 5.5 155 5.6 156 5.7 MgO 158 5.8 161 5.8.1 162 5.8.2 163 5.8.3 166 5.9 168 5.9.1 168 5.9.2 169 5.9.3 169 170 6 GMR, TMR 173 6.1 173 6.2 175 6.2.1 MR 175 6.2.2 GMR, TMR 175 6.2.3 176 6.3 177 6.3.1 177 6.3.2 MRAM 178 6.3.3 180 6.3.3.1 180 6.3.3.2 182 6.3.4 MRAM 184

vii 6.3.4.1 184 6.3.4.2 184 6.3.4.3 185 6.3.4.4 185 6.3.4.5 186 6.4 187 188 7 191 7.1 I V 191 7.2 192 7.3 STM 195 7.4 198 7.5 201 7.5.1 LLG 201 7.5.2 204 7.5.2.1 204 7.5.2.2 205 7.5.3 208 7.5.4 213 7.5.4.1 3d 213 7.5.4.2 214 7.5.4.3 216 217 220 1. 220 2. 221 3. 221 4. 222 223

1 1 1.1 1.1(a) 2 (b) 1.2(a) ds i e µ 1.1

2 1 µ = 1 2 µ 0 1.2 (x i e )d 3 x (1.1) 1) i e d 3 x = i e dx dy dz = I dx (1.1) µ = 1 2 µ 0I (x dx )= 1 2 µ 0I nx dx = nµ 0 IS (1.2) C C (b) n S (1.1) µ 0 µ 0 µ 0 µ p p = qs ±q s q +q s µ = q m s q m ± s q m Wb Wb m M Wb m/m 3 =Wb/m 2 (Bohr) 1 2.1 µ µ = g µ 0e 2m p (1.3) 2 (2.9) g 1 2 µ 0 e p

1.2 3 2π (1.3) 1.2 1 GMR, TMR 1.3 MRAM (magnetoresistive random access memory) HDD (hard disk drive) 6 1.4 (S. Bader) 1.3 1 1995

4 1 1.4 1) : (1999).

5 2 3d 3d 3d 2.1 2.1.1 M B σ B = µ 0 (H + M) =µ 0 H + µ 0 M = µ 0 H + J (2.1) B H M µ 0 (2.1) D = ε 0 E + P (2.2) D E P

6 2 ε 0 P J J M (2.1) µ 0 M M M M 1 µ m Fe µ =2.2 µ B µ B M µ 2.2 Z Z Z 1 2.1(a) 1 r m ω (= dθ/dt) e(ω/2π)[a] πr 2 I µ 0 IS 1 (b) µ ( ) eω µ = µ 0 IS = µ 0 πr 2 = µ 0eωr 2 (2.3) 2π 2 l l = r p p = mv : v = rω l = r(mv) =mr 2 ω (2.4) 1 (Maxwell)

2.1 7 2.1 (a) (b) (2.3) (2.4) µ = µ 0e 2m l (2.5) 2.2 (2.5) l l (l =0, 1, 2, ) l h 2π (2.5) µ = µ 0e 2m l (2.6) l l =1 µ µ B µ B = 4π 10 7 1.6 10 19 1.05 10 34 2 9.1 10 31 =1.165 10 29 [W m] (2.7) cgs µ B =9.273 10 21 [emu] µ B (Bohr magneton) µ B 1µ B 2µ B s s 2.2 (µ) (l)

8 2 µ s = µ 0e m s (2.8) (2.5) 2 p µ = g µ 0e 2m p (2.9) g =2 g =1 (2.9) γ γ = g µ 0e =1.105g [m/a s] (2.10) 2m γ g g 2.1.2 n l m l m s n 1, 2, 3, n =1, 2, 3 K, L, M n l =0, 1, 2,, (n 1) n l =0, 1, 2, 3, 4, s, p, d, f, g, n =3 M l =0, 1, 2 s, p, d l =2 d m l =2, 1, 0, 1, 2 5 m s = ±1/2 n =3 M Fe (1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ) me 4 ε n = (4πε 0 ) 2 2 2 n 2 (2.11) Fe 2.3 n, l, m l,m s K N 4s 2.4 1 2 3 1 2 3 3 1 2

79 3 3.1 3.1.1 ± 1 3.1 (1) (2) (3) (4) 3.1

80 3 3.1.1.1 1 3.2 1 θ 0 θ 3.2 E = K u sin 2 θ M s H cos(θ 0 θ) (3.1) K u 1 θ E/ θ =0 2 E/ θ 2 > 0 M s cos(θ 0 θ) θ 0 M s cos(θ 0 θ) H 3.3 0 (θ =0 ) (θ 0 = 180 ) 3.3 (θ = 180 )

3.1 81 (3.1) H k =2K u /M s H = H k θ =0 H = H k θ = θ 0 (θ 0 = 135 ) 3.4 H θ =0 H =0.5K k 180 3.5 (θ =90 ) 3.4 (θ = 135 ) 3.5 (θ =90 )

82 3 θ 0 = 180, 135, 90 3 M s cos(θ 0 θ) 3.6 θ 0 = 180 H = H k H k θ 0 = 135 H = H k /2 θ 0 =90 H 1) 3.6 3.1.1.2 MRAM (3.1) E/ θ =0 2 E/ θ 2 > 0 1 2 sin 2θ h sin(θ 0 θ) = 0 (3.2) cos 2θ + h cos(θ 0 θ) > 0 (3.3) h = H/H k, H k =2K u /M s M s H k ε

3.1 83 ε = 1 2 sin2 θ h cos(θ 0 θ) (3.4) h cos θ 0 = h x x h sin θ 0 = h y (3.4) (3.2) (3.3) ε = 1 2 sin2 θ h x cos θ h y sin θ (3.5) 1 2 sin 2θ h y cos θ + h x sin θ =0 (3.6) cos 2θ + h x cos θ + h y sin θ>0 (3.7) (3.7) 0 (3.6) h x h y h x = cos 3 θ h y =sin 3 θ θ h 2/3 x + h 2/3 y =1 (3.8) h x h y 3.7 3.7 3.1.1.3 1) 180 3.8 θ 3.9 x

84 3 3.8 180 3.9 180 E = U w 2M s H cos θx (3.9) U w 2M s H cos θx 2 2 x (3.9) x E x = U w x 2M sh cos θ = 0 (3.10) 180 3.10(a) (θ =0 ) (b) (c) ( U w / x) U w (3.10) 0 a 2M s H a U w / x a b c d (d) 0 a b c d (c) (d) (c) U w / x (d) 1 3.11(a) (b) (b) Fe 5 Co 70 Si 15 B 10

3.1 85 3.10 3.11 Fe 5 Co 70 Si 15 B 10 Kersten U w = C AK A : K : K K +(3/2)λσ

86 3 σ = σ 0 cos(2πx/l) 180 90 2M s 2 π 2 l λσ 0 δ 4M s 2 δ 3πλ 100 σ 0 λ 100 [100] 100 200 σ 0 l Néel 3.12 Kersten Néel 1 3.12 3.1.2 3.13 1 10 9 10 4 Mn-Zn (disaccommodation : DA) vk u v : 1 Kersten Néel M sh 10 3 (0.1 0.01) = 10 2 10 erg/cm 3

3.1 87 3.13 K u : 1 k B T (TMR) (MRAM) (Larmor) MHz GHz (FMR) (ESR) MHz GHz (spin switching) FMR

173 6 GMR, TMR GMR GMR TMR (MRAM) GMR,TMR 6.1 1950 100 1955 1) (creeping) 1967 Bobeck 2) (1) (2) (3) (4) (5)

174 6 GMR, TMR 1970 1980 1988 Fe/Cr GMR 3, 4) 1 2 3 3 GMR GMR 10 1994 TMR 5, 6) MgO 7, 8) 9, 10) GMR TMR MRAM (magnetoresistive random access memory) MRAM MRAM MRAM MRAM

6.2 175 6.2 6.2.1 MR 1980 Ndφ/dt N 1980 1990 MR 1997 MR GMR GMR 2004 TMR TMR dφ/dt dφ/dt MR 6.2.2 GMR, TMR 6.1(a) MR GMR(TMR) 6.1 (a) (b)

176 6 GMR, TMR (b) GMR TMR 6.2 GMR TMR GMR 6.2 6.2.3 MR 6.3 TMR TMR MgO MgO TMR CPP-GMR (current perpendicular to plane GMR ) GMR TMR 6.3 MR

1972 1972 1973 1975 1985 1991 2007 1997 1998 CREST 1999 Scuola Internazionale Superiore di Studi Avanzati (SISSA) 2004 2009 c 2013 2013 3 28 1 1 1 4 11 102 0071 03 3265 8341 FAX 03 3264 8709 http://www.morikita.co.jp/ Printed in Japan ISBN978 4 627 77461 2