power.tex

Similar documents
main.dvi

Part () () Γ Part ,


0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

Microsoft Word - 信号処理3.doc

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

I

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

meiji_resume_1.PDF

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

数学の基礎訓練I

keisoku01.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

ii

December 28, 2018

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

sec13.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

newmain.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

数学演習:微分方程式

chap1.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

29


chap10.dvi

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

untitled

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

201711grade1ouyou.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

untitled

?

Gmech08.dvi

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

main.dvi

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

untitled


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

2000年度『数学展望 I』講義録

0406_total.pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

QMII_10.dvi


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

6.1 (P (P (P (P (P (P (, P (, P.101

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

振動と波動

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

numb.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

6.1 (P (P (P (P (P (P (, P (, P.

TOP URL 1

( ) ( )

untitled

構造と連続体の力学基礎

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

waseda2010a-jukaiki1-main.dvi

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Transcription:

Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i

1987 SN1987A 0.5 X SN1987A 13 10 LaTeX 000 11 ii

1 {x } =1,,n ( ) P = n x (1 1) =1 {x } n Norm x {x } =1,,n x = 1 n n x (1 ) =1 {x x} { x} i.e. {x x} x =0 P = x = (x x + x) = (x x) + (x x) x + x = (x x) + x (1 3) P x DC ) (AC ) {(x,y )} =1,,n n y x ŷ = a(x x)+bt (1 4) a, b n S = (y ŷ ) (1 5) =1 a, b 1 S a = n =1 1 S b = (y ŷ )(x x) = 0 (1 6) n =1 (y ŷ ) = 0 (1 7) {(y ŷ )}, {a(x x)}, {b} {y } (y ŷ )a(x x) =0, P = (y ŷ )b =0, n y = {(y ŷ )+a(x x)+b} =1 = (y ŷ ) + a (x x) + a(x x)b = 0 (1 8) b (1 9) P DC ( b ),x ( a (x x) ), 1

(1 6),(1 7) a = (x x)(y ȳ) (x x), b =ȳ = 1 n y (1 10) C xy = (1 9) (1 10) (y ȳ) = (y ŷ ) + { (x x)(y ȳ)} (x x) (y ŷ ) (y ȳ) =1 { (x x)(y ȳ)} (x x) (y ȳ) { (x x)(y ȳ)} (x x) (y ȳ) 0 1 y y C xy =0 1 y x 1 C xy =1 a. b. a 1 {x } =1, n x 0 {x } 0 σ n {x } x P = x = x + (x x) ( 1) σ χ

χ,f X i : i =1, N 0, σ i N χ N 1,N χ χ 1 χ (N 1,N ) F χ = N i=1 X i σ i ( ) F = χ 1 /N 1 χ /N ( 3) ( 1) χ X x (x x) σ = σ + σ n 1 n 1 ( 4) (1,n 1) F F = x (x x) /(n 1) ( 5) {x } F F>F(90%) ( 6) 1 90% 0 ( ) m, σ m σ m :ˆm = x = 1 x ( 7) n σ :ˆσ = 1 (x x) ( 8) n 1 m, σ n x m, σ/ n m( m = 0), ˆσ/ n x x > <x(90%) 3

F ( 5) σ 0 σ 0 m σ 0 σ ˆσ = 1 n n ˆσ < ˆσ >= σ < > n ˆσ σ = n χ n 1 ˆσ 90% σ χ 1,χ χ 1 < nˆσ σ <χ n =1 n =1 x x σ nˆσ χ <σ < nˆσ χ 1 0 m, σ ˆm = x = 1 n ˆσ = 1 n 1 x (x x) x m σ n χ (x m) σ = (x x) ( x m) σ + σ n n 1 1 χ ˆσ (n 1)ˆσ (x x) σ = σ n 1 χ ˆm ( x m) n(ˆm m) F = = (x x) (n 1)ˆσ (1,n 1) F 4

n(ˆm m) n 1ˆσ <F 1 ˆm (n 1)F1ˆσ n (n 1)F1 <m< ˆm + ˆσ n {(x,y )} =1, n n ŷ = a(x x)+b y x a, b {y } m σ n (y m) = (y ȳ) + (ȳ m) (y m) = (y ŷ ) + σ χ a (x x) + (b m) (y m) σ = (y ŷ ) σ + a (x x) σ + (b m) σ N N 1 1 F = a (x x) (y ŷ ) /(N ) (1,N ) F F a, b F {y } a, b a, b {y } y true = a true (x x)+b true σ (y y true ) = = (y ŷ ) + (ŷ y true ) (y ŷ ) + (a a true ) (x x) + (b b true ) σ (y y true ) σ = (y ŷ ) σ + (a a true ) (x x) σ + (b b true ) σ n n 1 1 χ F a = (x x) (y ŷ ) /(n ) (a atrue ) 5

n F b = (y ŷ ) /(n ) (b btrue ) (1,n ) F ˆσ yf 1 ˆσ a yf 1 (x x) <atrue <a+ (x x) b ˆσ y F 1 n <btrue <b+ ˆσ y F 1 n (y y true ) (y ŷ ) + (ŷ y true ) {P k } k =1, N (P k Pk true ) (ŷ ŷ true ) (ŷ y true P k P l k,l ) [ P k P (ŷ l y true ) ] (P k Pk true )(P l Pl true ) (ŷ y true ) = k A k (q k q true k ) (q k P k )A k (q k q true k ) σ F k = 1 χ A k (q k q true k ) (y ŷ ) /(n N) (1,n N) F q k P k y y true 1. χ 1 =. (y ŷ ) σ χ (y y true ) = σ = χ 1 + (ŷ y true ) σ n n N N χ χ 1 n N χ 3. 3. χ χ 1 χ χ χ 1 χ 6

1 10kΩ 8 1 3 4 5 6 7 8 10.5 11.0 9.93 9.97 10.46 10.03 9.96 10.50 kω 1.. 3. (log L X ),B (log L B ) 1. log L X log L B. log L X (log L B log L B ) log L X 3 3. log L X log L B 4. log L B log L X Table 1: EARLY-TYPE GALAXIES Name M B log L X log L B erg / s L N0315 -.3 41.91 11.11 N054-1.8 40.83 10.9 N0584-1.7 40.17 10.85 N070-1.5 41.06 10.78 N0936-1.1 39.90 10.63 N133-1.1 40.74 10.64 N1380-1.0 40.55 10.59 N1395-1. 40.88 10.68 N1407-1.5 41.11 10.78 N1533-19.8 39.76 10.1 N1600 -.9 41.81 11.33 N300-1.4 41.10 10.74 N563-1.6 41.58 10.81 N685-0.1 39.91 10.4 7

3 (DFFT) N {x n } n =0, 1,,N 1 ( 0 N 1 ) (discrete) (finite) (Fourier Transform) X(ω k )= n=0 x n e iω k n (3 1) ω k = π k, k=0, 1,,N 1 (3 ) N X n = 1 N k=0 X(ω k )e iω k n e iω k n (3 3) n=0 (3 3) x n 1 e iωk n (e iω k n ) = δ k,k (3 4) N n=0 x n = 1 N k=0 {x n } (3 5) (3 3) x n n n <0,n > =N x n+mn = 1 N k=0 X(ω k ) (3 5) X(ω k )e iω k(n+mn) = x n (3 6) {x n } 1 X(ω k ) π X(ω k+mn )=X(ω k +mπ) =X(ω k ) (3 7) DFFT n, k 0 N 1 DFFT n k DFFT ax n + by n ax(ω k )+by (ω k ) (3 8) x n+m e iωkm X(ω k ) (3 9) m=0 y n m x m Y (ω k )X(ω k ) (3 10) x n X ( ω k ) (3 11) x n X ( ω k )=X(ω k ) (3 1) X(ω 0 )=N x (3 5) n=0 x n = 1 N X(ω 0) + 1 N DC X(ω k ) k=1 AC 8

{x n } m σ N (x n ) n=0 (x k m) = n=0 ( x m) + 1 N ( N) = n=0 ( x m) + N k=1 X(ω k) (1) ( ) () n=0 ( x m) + N k=1 X(ω k) N = odd k=1 X(ω k) + 1 N X(ω N ) N = even (1) ( ) ( N 1) (1) σ χ X(w k ) { N = odd N = even, k < = N 1 X(w k ) = Nσ [ χ = = X(w k ) N σ = { N = even k = N X(w k ) k 9

4 (CIFT) DFFT CIFT DFFT x a (t) A. x n = tn+1 t n x a (t)dt t n = t 0 + n n =0, 1, N 1 (4 9) x(t) t n t n+1 B. x n = x a (t n ) (4 10) t = t n 10

DFFT x(t) CIFT A (4 9) x a (t) (4-1) x n (4-8) tn+1 x n = dt 1 dωx a (Ω)e iωt dω t n π = 1 tn+1 dωx a (Ω) dte iωt π = 1 π t n dωx a (Ω) i Ω e iωtn (e iωt 1) (4 11) Ω k X(w k )= n=0 1 dωx a (Ω) i π Ω e iωtn (e iωt 1)e iw kn (4 1) Ω k = ω k ω k n =Ω k (t n t 0 )=Ω k (n t 0 ) (4 13) n X(ω k )= 1 dωx a (Ω) i π Ω (e iω 1)X a (Ω) e i(ω Ω k)n iωt 0 (4 14) n=0 X(ω k )= 1 π e i(ω Ω k)tn = 1 ei(ω Ω k)n 1 e i(ω Ω k) n=0 = e i (Ω Ωk)() sin [ Ω Ω k N ] sin [ Ω Ω k ] dωx a (Ω)e i [(Ω Ω k)n+ω k ] sin ( ) Ω ( Ω ) sin [ Ω Ω k N ] Ω=Ω + π m m =0, ±1, ±, sin [ Ω Ω k ] e iωt0 (4 15) Ω π+πm π+πm X(ω k ) = 1 π sin π m= π [ (Ω + πm ) Ω + πm ( dω X a Ω + πm ] ) e i [(Ω Ω k )N+Ω k ] [ ] sin Ω Ω k N ] ( 1) Nm+N m e i(ω + πm )t 0 (4 16) sin [ (Ω Ω k ) g(ω) = sin ( ) Ω sin [ Ω Ω k N ] Ω (4 17), h k (Ω) = [ ] (4 18) sin (Ω Ωk ) g x n T h 11

(4 16) 1. g(ω) X a (Ω) g(ω). [ π, ] [ π π, π ], [ π, 3π ] 3. h k (Ω) h k (Ω) h k (Ω) N δ(ω Ω k ) Ω ( > π ) π m (aliasing) π 1 (Nyquist Frequency) h k (Ω) π N = π T h k(ω) Ω k π T ( 1 T ) B x n = x a (t n ) (4 11) A X (ω k )= 1 π m=0 π π x n = 1 dωx a (Ω)e iωtn π ( dω X a Ω + πm ) e i [(Ω Ω k )N] h k (Ω ) e i(ω + πm )t 0 (4 19) 1

5 x a (t) P x a (t + P )=x a (t) (5 1) X a (Ω) X a (Ω) = = = m= x a (t)e iωt dt P 0 m= 0 x a (t + Pm)e iω(t+pm) dt P e iωpm x a (t)e iωt dt m m= X a (Ω) = e iωpm =π k= k= δ(ωp πk) = π P δ(ω Ω k ) π P X(Ω k) k= δ(ω π k) (5 ) P (Ω k = π k) (5 3) P X a (Ω) P ( :Fundamental) ( :higherharmonics) δ δ 1 CFFT,X(Ω k ) (5 ) CFFT (4-3) (4-4) X(Ω k ) x a (t) = 1 T T 0 x a (t) e iω k(t t ) dt k= k= e iω k(t t ) = k= ( ) e i π π T (t t )k = Tδ(t t )=πδ T (t t ) for 0 < π T (t t ) π e ixk = πδ(x +πm) k= m= π 13

DFFT (5 3) (4 16) (4 19) X (33m/sec) 14

A P sin x a (t) =A sin(ω 1 t) X(Ω k ) k = ±1 0 Ω 1 = π P (5 4) P X(Ω k ) = A sin(ω 1 t)e iω k t dt 0 = AP i (δ k, 1 δ k,1 ) X a (Ω)=π A i [δ(ω + Ω 1) δ(ω Ω 1 )] (5 5) x a x n N x n DFFT ( <P ) (4 16) [ ]{ X(ω k )= A [ sin Ω 1 sin ωk ω N ] Ω 1 sin [ ] ω k ω e iϕ + sin [ ω k +ω N ] } sin [ ] ω k +ω e iϕ (5 6) ( ω =Ω 1 = π P ) ϕ, ϕ k N 1 ω k ω [ ] sin (ωk ω) N sin [ ω k ] ω = N sin [ π ( )] [ k N π ( )] [ ( )] P N k N P π k N P sin [ ( )] N sin [ π ( )] k N [ ( P)] π N k N P π k N P ω k ω sin [ ω k ω N ] sin [ ] ω k ω N 15

X(ω k ) ω k ±ω k [ X(ω k ) max = A ( sin Ω1 )] Ω 1 [1 0.64 ]Ne iϕ (5 7) X(ω k ) X(ω k ) max for ω k ω ω k ω (5 8) 6 X(ω k ) max = A N sin ( ) Ω 1 (1 0.64) (5 9) 4 Ω 1 = m, = σ T s 6-1. T s T n n 1 P (ω k ) = X (l) (ω k ) l=0 (6 1) X l (ω k ) = x +ln e iω k (l =0, n 1) =0 ( T 1. M780 AES0b VP-00 N = 0 4 ( 10 6 4 10 6 ) FFT N =10 6 M780( 10 )VP00( ). X T s (P11 (4 18), P14) π/t π/t 16

S/N x σ Nσ P (ω k ) n χ i n 1 P (ω k ) σp σ P 4n Nσ (n 1 σ P P ) (6 ) x (5 9) P (ω k) max σ P P (ω k ) max = A 4 nn sin ( ) Ω 1 (1 0.64) (6 3) = A 4 Ω 1 1 σ nnδ() A nn A TK s T S = A TT s (6 4) T s T T = T s ) 6-. {x } σ nn ( σ known ) n χ χ χ (n : Q) k P k P k Nσ χ (n : Q) (6 5) 1 Q k =1,, ( N k ) 1 or ( ii N P k > Nσ χ (n : Q) ) 1or k 1 Q N 1 1 Q 1 Q N (6 6) C( C =0.95) C = Q N (6 7) Q χ P k Nσ χ (n : Q) 6-3. ( ) ( π T k 1 ν π T k + 1 ) Z σ w i k = N ii (N=,N= ) x = z + w (6 8) 17

X(ω k )=Z(ω k )+W(ω k ) (6 9) X(ω k ) = Z(ω k ) + W (ω k ) + Z(ω k )W (ω k )+W(ω k )Z (ω k ) (6 10) w W (ω k ) =0 ( ) X(ω k ) = Z(ω k ) + W (ω k ) (6 11) z Ẑ(ω k) l l = l X (l) (ω k ) l W (l) (ω k ) X (l) (ω k ) Nσ n (6 1) Ẑ(l) (ω k ) Z (l) (ω k ) = W (l) (ω k ) Nσn+ Z(ω k )W (ω k )+W(ω k )Z (ω k ) (6 13) l l l folding ( folding ) 6-4. ( ) C (6 7) (6 5) P k Z l (ω k ) P k 1 C Z(ω k ) Z X(ω k ) Z(ω k ) W (ω k ) (6 10), X (l) (ω k ) l l l Z (l) (ω k ) + l W (l) (ω k ) < Nσ χ (n : Q) Z (l) (ω k ) < Nσ χ (n : Q) Nσ χ (n :1 C) (6 14) l χ (n :1 C) χ sin A upperlimit (6 3),(6 14) 4 nn sin ( Ω 1 ) A Ω 1 (1 0.64) (1 0.64) < Nσ χ (n : Q) Nσ χ (n :1 C) 1 N h k(ω) = sin[(ω Ω k)n/] N sin[(ω Ω k )/] 18

A < Ω 1 sin ( Ω 1 ) ( ) 1 N h k(ω) 0.773 1 0.773 4 σ nn [χ (n : Q) χ (n :1 C)] (A 1 Ω 1 ) 19

3 DFFT (p7, (3-8) (3-1) 4 m σ nn {x ; =0,nN 1} N DFFT n X (L) (ω k )= =0 x +LN P (ω k )= X (L) (ω k ) e iω k (L=,...,n-1) P (ω k ) 5 n χ n 1 n n n 1 P (ω k ) 6 x(t) (t =, ) t n (n =0,...,N 1) x n = x(t n ) DFFT t =0 T (T = N) x(t) CFFT 0