main.dvi

Similar documents
main.dvi

main.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

main.dvi

dfilterh.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Part () () Γ Part ,

液晶の物理1:連続体理論(弾性,粘性)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

A

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

chap1.dvi

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

『共形場理論』

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

notekiso1_09.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

pdf

77

II 2 II

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

Gmech08.dvi

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

Z: Q: R: C:

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0


29


I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

30

Note.tex 2008/09/19( )

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

高等学校学習指導要領

高等学校学習指導要領

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

数学メモアール 第4巻, (2004)



(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Chap11.dvi

振動と波動

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

meiji_resume_1.PDF

Z: Q: R: C: sin 6 5 ζ a, b

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Jacobi, Stieltjes, Gauss : :

Gmech08.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Z: Q: R: C: 3. Green Cauchy

DVIOUT-fujin

main.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

プリント

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

QMI13a.dvi


D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

prime number theorem

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Transcription:

2 e jωt, 0 ωt < 2π 2.1 2.1.1 x(n) X(z) = x(n)z n (2.1) z z z = e σ+jωt = re jωt, r = e σ (2.2) ωt 0 2π σ e σ+jωt = re jωt r = e σ 2.1 0 <r<1(σ <0) 1 <r(0 <σ) r =1(σ =0) 2.1.2

2.1 29 2.1 X(z) = x(n)z n = x(n)r n e jωnt (2.3) x(n)r n S = x(n)r n < (2.4) x(n) x(n) r z z 1, n 0 x(n) =u(n) = 0, n < 0 (2.5) x(n) S = x(n)r n 1 r N = lim N 1 r 1 (2.6) r 1 < 1 S z e jωnt =1 (2.7) z 1 < 1 z > 1 1

30 2. 2.2 X(z) = x(n)z n 1 =, z > 1 (2.8) 1 z 1 2.2 2.1.3 X(z) = z X(z) =0 z x(n) = a n u(n) (2.9) X(z) = x(n)z n = a n z n = (az 1 ) n (2.10) az 1 < 1 X(z) = 1 1 az 1 = z z a (2.11) z > a a z =0 z = a 2.3

2.1 31 2.3 2.1.4 1 x(n) X(z) = n 2 n=n 1 x(n)z n (2.12) n 1 < 0 z p, p > 0 z = n 2 > 0 z p, p < 0 z =0 2 X(z) = x(n)z n, n 1 < (2.13) n=n 1 z = z 1 S = x(n)z1 n < (2.14) n=n 1 n 1 0 z > z 1 z S = x(n)z n < x(n)z1 n < (2.15) n=n 1 n=n 1

32 2. n 1 < 0 (2.13) 1 X(z) = x(n)z n + x(n)z n, n=n 1 n 1 < (2.16) z = z > z 1 a 2.2 2.2.1 1. x(n) X(z) z 2. x(n) x(n) < 3. x(n) X(z) z = e jωt x(n) x(n) 4. e jωt 2.2.2 1

2.2 33 h(n) S = h(n) < (2.17) h(n) h(n) 2.1.3 S < a < 1 z > a X(z) a 2.4 2.4 2 h(n)

34 2. h(n) h(n) =a n,n 0 az 1 < 1 h(n) 2.5 a > 1 2.5 2.2.3 1. 2. 3. 4. 2.3 x(n) Z[x(n)]

2.3 35 2.3.1 z p z > max{ z p } 2.6 2.6 2.3.2 1 X(z) =Z[x(n)], R x < z (2.18) Y (z) = Z[y(n)], R y < z (2.19) a b Z[ax(n) +by(n)] = (ax(n)+by(n))z n = a x(n)z n + b y(n)z n = ax(z)+by (z), max{r x,r y } < z (2.20)

36 2. 2 X(z) =Z[x(n)] x(n + n 0 ) Z[x(n + n 0 )] = x(n + n 0 )z n = x(m)z (m n0) = z n0 [ m= m= x(m)z m ](2.21) Z[x(n + n 0 )] = z n0 X(z) (2.22) n 0 > 0 x(n + n 0 ) z =0, z = 2.3.3 1 Z[a n x(n)] = X(a 1 z), a R x < z (2.23) X(z) z p = r p e jωp z z = r z e jωz (2.24) (2.25) X(a 1 z) a = a e jφ (2.26) z pa = a r p e j(ωp+φ) (2.27) z za = a r z e jωz+φ (2.28) 2 X(z) x(n) z

dx(z) dz = = z 1 x(n) dz n dz = 2.3 37 nx(n)z n 1 nx(n)z n (2.29) zdx(z)/dz nx(n) 3 x(n) x (n) x (n) ( Z[x (n)] = = x (n)z n ) x(n)(z ) n = X(z ) (2.30) Z[x (n)] = X (z ) (2.31) 2.3.4 1 y(n) = h(k)x(n k) (2.32) k= Y (z) =H(z)X(z) (2.33) 2 y(n) =h(n)x(n) (2.34) Y (z) = h(n)x(n)z n (2.35)

38 2. = = 1 2πj [ 1 h(n) 2πj [ c c c ] X(v)v n 1 dv z n (2.36) h(n)( z v ) n ] v 1 X(v)dv = 1 H( z 2πj c v )X(v)v 1 dv (2.37) = 1 H(v)X( z 2πj v )v 1 dv (2.38) (2.36) x(n) 2.4 (2.38) x(n) h(n) z = re jφ v = ρe jθ (2.39) (2.40) v θ v c θ [ π, π] dv dθ = jρejθ = jv (2.41) dv jv = dθ (2.42) π Y (re jφ )= 1 H(ρe jθ )X( r 2π π ρ ej(φ θ) )dθ (2.43) Y φ H X θ 2.3.5 (2.35) (2.38) z =1

2.4 39 h(n)x (n) = 1 2πj H(v)X ( 1 v )v 1 dv (2.44) c h(n) x(n) v = e jωt (2.45) dv dωt = jejωt = jv (2.46) dv = dωt (2.47) jv h(n)x (n) = 1 π H(e jω )X (e jω )dωt (2.48) 2π π h(n) =x(n) (2.49) x(n) 2 = 1 π X(e jω ) 2 dωt (2.50) 2π π 2.4 X(z) x(n) 2.4.1 X(z) z x(n)

40 2. X(z) = N 1 i=0 a iz i M 1 i=0 b iz = i N 1 i=0 a i z i = M 1 i=0 b i z i x(n)z n, b 0 =1 (2.51) x(n)z n (2.52) z z n a 0 = x(0) a 1 = b 1 x(0) + x(1). (2.53) 0 = b M 1 x(n M +1)+b M 2 x(n M)+ + x(n) x(0) x(1) x(2) x(n) 2.4.2 z N 1 i=0 X(z) = a iz i M 1 i=0 b iz i L M 1 = α i z i β j + 1 p i=0 j=1 j z 1 (2.54) L = N M 0 M 1 X(z) b i z i =0 p j i=0 β j 1 p j z 1 = β j (p j z 1 ) n = β j p n j z n (2.55)

2.4 41 M 1 x(n) =α n + β j p n j, 0 n L (2.56) x(n) = M 1 j=1 j=1 β j p n j, L < n (2.57) N = M =2 X(z) = a 0 + a 1 z 1 + a 2 z 2 1+b 1 z 1 + b 2 z 2 = α β 1 0 + 1 p 1 z 1 + β1 1 p 1 z 1 = α 0 + β 1 (p 1 z 1 ) n + β1 (p 1z 1 ) n (2.58) x(0) = α 0 +2R[β 1 ] x(n) =β 1 p n 1 + β 1 p n 1 =2R[β 1 p n 1 ], n 1 (2.59) 2.4.3 X(z) = x(n)z n (2.60) z k 1 C 1 X(z)z k 1 x(n) dz = z n+k 1 dz (2.61) 2πj 2πj c 1 z k 1 1, k =0 dz = 2πj c 0, k 0 c (2.62) (2.61) n = k 1 n k (2.61) x(k)

42 2. x(k) = 1 X(z)z k 1 dz (2.63) 2πj c C 2.7 Z Im 1 C Re C 1 2.7 1 F (z)dz C (2.64) 2πj c F (z) F (z) K ψ k (z) F (z) = (z z k ) r (2.65) k k=1 ψ k (z) =0 z k z k r k F (z) K [ 1 d r k 1 ] ψ k (z) Res[F (z)] = (r k 1)! dz r (2.66) k 1 z=z k k=1 (2.63) F (z) =X(z)z k 1 (2.67) n 0

2.5 43 1 X(z) =, z > a (2.68) 1 az 1 x(n) = 1 z n 1 dz (2.69) 2πj c 1 az 1 = 1 z n dz (2.70) 2πj c z a n 0 C z = a 1 F (z) = zn z a (2.66) [ 1 d 0 z n ] x(n) = (1 1)! dz 0 z=a (2.71) = a n, n 0 (2.72) 2.5 2.5.1 H(z) h(n) (2.33) x(n) y(n) Y (z)/x(z) H(z) = h(n)z n (2.73) H(z) = Y (z) X(z) M 1 j=0 b j y(n j) = N 1 i=0 (2.74) a i x(n i) (2.75) x(n) y(n) z 2.3.2

44 2. M N b j z j Y (z) = a i z i X(z) (2.76) j=0 i=0 H(z) = Y (z) X(z) = N 1 i=0 a iz i M 1 j=0 b jz j (2.77) 2.8 2.8 IIR (1) y(n) =a 0 x(n)+a 1 x(n 1) + a 2 x(n 2) b 1 y(n 1) b 2 y(n 2) (2.78) z H(z) =Y (z)/x(z) Y (z) = (a 0 + a 1 z 1 + a 2 z 2 )X(z) (b 1 z 1 + b 2 z 2 )Y (z) (2.79) H(z) = Y (z) X(z) = a 0 + a 1 z 1 + a 2 z 2 1+b 1 z 1 + b 2 z 2 (2.80) 2.8 2.9 2 z 1,z 2 2 2 a 0,a 1,a 2,b 1,b 2 5 2 4 w(n)

2.5 45 2.9 IIR (2) w(n) =x(n) b 1 w(n 1) b 2 w(n 2) (2.81) y(n) = a 0 w(n)+a 1 w(n 1) + a 2 w(n 2) (2.82) z W (z) (2.83) W (z) =X(z) b 1 z 1 W (z) b 2 z 2 W (z) (2.84) Y (z) = a 0 w(z)+a 1 z 1 W (z)+a 2 z 2 W (z) (2.85) H(z) = Y (z) X(z) = a 0 + a 1 z 1 + a 2 z 2 1+b 1 z 1 + b 2 z 2 (2.86) 2 2.5.2 H(z) =0 H(z) = z h(n) =0,n<0 n 0 z =0 z = z (2.77) z

46 2. N i=1 H(z) =a (1 z iz 1 ) M j=1 (1 p jz 1 ) (2.87) z i p j 2.5.3 h(n) h(n) z = e jωt z H(z) H(z) = 1 az 1 1 bz 1 = z a z b (2.88) a b b < 1 H(z) H(e jω ) = ejωt a e jωt b (2.89) z z 2.10 ω 1 T 1 < H(e jω ) ω 2 T H(e jω ) < 1 2.11( ) 0.8 ±π/4 ±π/2 π

2.6 47 Z Im e 2 jω T e 1 jω T a 0 b 1 Re 2.10 z = e jωt H(z) = (1 ejπ z 1 )(1 e jπ/2 z 1 )(1 e jπ/2 z 1 ) (1 0.8e jπ/4 z 1 )(1 0.8e jπ/4 z 1 ) = (2.90) (1 + z 1 )(1 + z 2 ) 1 1.6 cos(π/4)z 1 +0.64z 2 (2.91) 2.11( ) ωt = π/4, 7π/4,f = f s /8, 7f s /8 ωt = π/2,π,3π/2,f = f s /4,f s /2, 3f s /4 ωt =2π f = f s ωt =0 π f =0 f s /2 2.6 2.12 1 h(n) =0, n < 0

48 2. Z Im 0 π/4 π/4 1 Re j H( e ω T ) 0 π/ 2 π 3π / 2 0 fs /4 f S /2 f / 4 3 S 2π f S ωt ωt f 2.11 h(0) = a 0 (2.92) h(n) =a 0 ( b) n + a 1 ( b) n 1, n 1 H(z) h(n) H(z) = h(n)z n = a 0 + [a 0 ( b) n + a 1 ( b) n 1 ]z n n=1 = a 0 + a 0bz 1 1+bz 1 + a 1z 1 1+bz 1, bz 1 < 1

2.6 49 n =- h (n ) < [8] [5] z = e [6] [1] [4] jωt [7] [2] [3] [9] 2.12 H(z) =a 0 = a 0 + a 1 z 1 1+bz 1 (2.93) = ( b) n z n + a 1 n=1 ( b) n z n a 0 1+bz 1 + a 1z 1 1+bz 1 = a 0 + a 1 z 1 1+bz 1 (2.94) H(z) = a 0 + a 1 z 1 1+b 1 z 1 = a 0 1+b 1 z 1 + a 1z 1 1+b 1 z 1 (2.95) 1 2 a 0 1+b 1 z 1 = a 0[1+( bz 1 )+(b 1 z 1 ) 2 + ] (2.96) a 1 z 1 1+b 1 z 1 = a 1z 1 [1+( bz 1 )+(b 1 z 1 ) 2 + ] (2.97) z 1 H(z) =a 0 +(a 0 ( b 1 )+a 1 )z 1

50 2. +(a 0 ( b 1 ) 2 + a 1 ( b 1 ))z 2 + (2.98) = h(0) + h(1)z 1 + h(2)z 2 + (2.99) (2.92) h(n) 2 H(z) H(z) = Y (z) X(z) = a 0 + a 1 z 1 1+bz 1 (2.100) (1 + bz 1 )Y (z) =(a 0 + a 1 z 1 )X(z) (2.101) y(n)+by(n 1) = a 0 x(n)+a 1 x(n 1) (2.102) y(n) =a 0 x(n)+a 1 x(n 1) by(n 1) (2.103) 3 2.13(a) w(n) a 0 x (n) w (n) y(n) + + b T a 1 (a) x(n) a 0 + y(n) T T a 1 b x ( n 1) y( n 1) (b) 2.13 x(n) y(n) w(n) w(n) =x(n) bw(n 1) (2.104) y(n) = a 0 w(n)+a 1 w(n 1) (2.105)

x(n) w(n) w(n 1) = b x(n) w(n) y(n) = a 0 w(n)+a 1 2.6 51 b (2.106) (2.107) w(n) a1 y(n) b = a 0 a1 b (2.108) w(n) (2.105) (2.103) y(n) y(n) a1 b y(n) =a y(n 1) a1 b x(n 1) 0 + a a 0 a1 1 b a 0 a1 b (2.109) = a 0 x(n)+a 1 x(n 1) by(n 1) (2.110) (2.104) (2.105) z W (z) X(z) Y (z) z (2.104) (2.105) 2.13(b) x(n) y(n) y(n) =a 0 x(n)+a 1 x(n 1) by(n 1) (2.111) (2.104) (2.105) w(n) w(n 1) W (z) Y (z)/x(z) W (z) =X(z) bz 1 W (z) (2.112) Y (z) = a 0 W (z)+a 1 z 1 W (z) (2.113) W (z) = X(z) 1+bz 1 (2.114) Y (z) = (a 0 + a 1 z 1 )W (z) = a 0 + a 1 z 1 X(z) (2.115) 1+bz 1

52 2. H(z) = Y (z) X(z) = a 0 + a 1 z 1 1+bz 1 (2.116) (2.110) w(n) w(n 1) W (z) 4 h(n) y(n) = n h(m)x(n m) (2.117) m=0 (2.104) (2.105) n =0, 1, 2, x(n) w(n 1) w(n) y(n) 5 H(e jω )= h(n)e jωnt (2.118) h(n) = 1 2π π π H(e jω )e jωnt dωt (2.119) 6 z = e jωt 7 (2.93) 2.13

2.6 53 8 h(n) h(n) < (2.120) z p z p < 1 z p =1 z p > 1 9 1. (a) (b) (c) (d)

54 2. (e) (f) z =( ) 2. h(n) z H(z) h(n) 2r n cos(ω 0 nt ), 0 n h(n) = (2.121) 0, n < 0 (a) h(n) z H(z) z 1 (b) (c) (d) (e) H(z) r =0.9 ω 0 T = π/2 H(z) ωt =0,π/4,π/2,π/4,π x(n) y(n) x(n) =ae j(ωnt+φ), a =0.7,ωT = π/4,φ=0.3[rad](2.122) 3. (a) H(z) = 1 0.3z 1 (1 + 0.5z 1 )(1 0.8z 1 ) H(z) h(n) (2.123) (b) (c) h(n) H(z) H(z) h(n) H(z)

2.6 55 (d) (e) (f) (g) (h) (i) (j) h(n) e jωt H(z) e jωt H(z) x(n) y(n) H(z) w(n) x(n) y(n) 1, n =0, 1, 2 x(n) = 0, n 0, 1, 2 (2.124) h(n) x(n) y(n) 4. 2.14 (a) (b) (c) (d) (e) (f) y(n) x(n) w(n) H(z) =Y (z)/x(z) H(z) H(z) h(n) 2.15 x(n) x(n) =a cos(ωnt + φ) a ωt φ x(n) y(n)() () b =0.5 a 0 =1 a 1 =1y(n) θ tan θ =

56 2. x (n) w(n) y(n) + + a 0 b T a 1 2.14 IIR 1 0 x(n) ~ 2 1 3 4 n -1 2.15 x(n)

2.6 57 1 z k 1 dz (2.125) 2πj c C C e jθ z = e jθ dz dθ = jejθ dz = je jθ dθ (2.126) (2.127) (2.128) C θ 0 2π (2.125) 1 2πj 2π 0 2π e jθ(k 1) je jθ dθ = 1 e jθk dθ 2π 0 1, k =0 = 0, k 0 (2.129) 1 1 dz (2.130) 2πj c (z z p ) k 1 (z z p ) k 1 dz (2.131) 2πj c C z p