SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Similar documents
SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

量子力学 問題

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

B ver B


( )

量子力学3-2013

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

all.dvi

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

TOP URL 1

0 4/

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

液晶の物理1:連続体理論(弾性,粘性)

Part () () Γ Part ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

第3章

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

meiji_resume_1.PDF

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

note1.dvi

untitled

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

TOP URL 1

30


SO(2)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


untitled

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

,,..,. 1

QMII_10.dvi

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

III,..

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

B

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

all.dvi



6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

0406_total.pdf

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

all.dvi

untitled

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

2012専門分科会_new_4.pptx

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

多体問題

all.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Untitled


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

2000年度『数学展望 I』講義録

untitled

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

chap10.dvi


eto-vol1.dvi


TOP URL 1

DVIOUT-fujin

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Planck Bohr

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

日本内科学会雑誌第102巻第4号

直交座標系の回転

Transcription:

SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y ) (x iy)( x + i y )] (5.119) X ± = x ± iy, ± = 1 ( x i y ), [ +, X + ] = [, X ] = 1 (5.10) X + = X. l ± = (x ± z z ), l z = X + + X (5.11) highest weight state a l 5.7. l + Ψ ll (x, y, z) = 0 (5.1) Ψ ll = a l X l + = a l (x + iy) l (5.13) l k = (X z z + ) k (5.14) (l + m)! Ψ lm = a l (l)!(l m)! ll m X+ l (5.15) H = 1 m p + V (r) = ħ m + V (r) (5.16)

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ + cot θ cos ϕ ϕ ) + cot θ sin ϕ ϕ ) (5.130) l 1 = ( sin θ θ sin θ θ + 1 sin θ ϕ ) (5.131) l + = e iϕ ( θ + i cot θ ϕ ) (5.13) 5.7.3 l = e iϕ ( θ + i cot θ ϕ ) (5.133) l 3 l 17 θ, ϕ Ĵi l, m = l i θ, ϕ l, m (5.134) 17 1. l. m

SO(3) 73 Ĵi l θ, ϕ jm Y lm (θ, ϕ) = θ, ϕ l, m l, m Ĵi l, m = dω l, m θ, ϕ θ, ϕ Ĵi l, m = dω l, m θ, ϕ l i θ, ϕ l, m = dωy lm (θϕ)l i Y lm (θϕ) (5.135) l, m Ĵi l, m = dωy lm (θϕ)l i Y lm (θϕ) (5.136) dω π π l i l i Y lm = θϕ Ĵi l, m = 0 0 sin θdθdϕ (5.137) l m = l Y lm lm Ĵi lm (5.138) 5.7.4 Y lm l 3 highest weight state l 3 Y lm = my lm (5.139) Y lm (θ, ϕ) = ψ lm (θ)e imϕ (5.140) l 3 Y ll = ly ll Y ll (θ, ϕ) = ψ ll (θ)e ilϕ (5.141) Y m l lowest weight state Y l l l + 1. lowest weight state lowest weight state ϕ Y l l = ψ l l (θ)e ilϕ (5.14)

SO(3) 74 lowest weight state l Y l l = e i( l 1)ϕ ( θ + l cot θ)ψ l l(θ) = 0 (5.143) a ψ l l (θ) = a(sin θ) l (5.144) l +. l + ψ lm e imϕ = (l m)(l + m + 1)ψ lm+1 (θ)e i(m+1)ϕ (5.145) ψ l l k ψ l,k l ψ lm = a( 1) l+m (l m)! d (l)!(l + m)! sinm θ( d cos θ )l+m sin l θ (5.146) m = l m = k ψ lk+1 = l + ψ lk e ikϕ = e iϕ ( θ + i cot θ ϕ )ψ lke ikϕ 1 sin k θ (l k)(l + k + 1) θ ( 1 sin k θ ψ lk) = e i(k+1)ϕ ( θ k cot θ)ψ lk = e i(k+1)ϕ sin k θ θ ( 1 sin k θ ψ lk) (5.147) 1 = sin k θ (l + k)(l k + 1) θ ( 1 (l k)! d sin k θ a( 1)l+k (l)!(l + k)! sink θ( d cos θ )l+k sin l θ) = sin k+1 θ(a( 1) l+k+1 (l k 1)! (l)!(l + k + 1)! ( d d cos θ )l+k+1 sin l θ) (5.148) m = k + 1 3. a dω = sin θdθdϕ l, l l, l = π 0 dϕ π 0 dθ sin θψ l, lψ l, l = π a π 0 sin l+1 θ = π a (s l l!) sl + 1 = 1 (5.149)

SO(3) 75 a = 1 (l + 1)! l l! 4π (5.150) Y lm (θ, ϕ) = ( 1)l+m l + 1 (l m)! d l l! 4π (l + m)! sinm θ( d cos θ )l+m sin l θe imϕ (5.151) 5.8 SU() 5.8.1 dynamical symmetry SU() H = ( 1 m p i + 1 ) mω x i (5.15) ρ O() m = ω = 1 a ρ = 1 (x ρ + ip ρ ), a + ρ = 1 (x ρ ip ρ ) (5.153) ħ ħ [(x + ip), (x ip)] = i[p, x] = ħ [a ρ, a + σ ] = δ ρσ (5.154) N H = ħ (a + ρ a ρ + 1 ) = ħ(n + 1) (5.155) N = N 1 + N, N ρ = a ρa ρ (5.156)

SO(3) 76 ( ) ( ) ( ) ( ) a1 a 1 α β a1 = (5.157) γ δ a a ( ) α β,u = U γ δ U = 1 dynamical symmetry( ) 18 1. a ρ = U ρ ρa ρ U [a ρ, a σ ] = U ρ ρu σ σ[a ρ, a σ] = U ρ ρu σ σδ ρσ (5.158) a UU = 1 (5.159). : N N = ( ) ( ) a + 1, a + a 1 (5.160) a ( a1 a ) U() 5.8. U() H ψ = E ψ (5.161) 0 ρ a ρ 0 ρ = 0, p ρ = 1 p! (a + ρ ) p 0 (5.16) 18

SO(3) 77 p ρ p q = δ pq, a ρ p ρ = p + 1 p + 1, a ρ p = p p 1 ρ (5.163) p 1 q = 1 p!q! (a + 1 ) p (a + ) q 0 1 0 (5.164) U() = SU() U(1) 1. SU() a 1, a [N ρ, a + ρ ] = a + ρ, [N ρ, a ρ ] = a ρ (5.165) σ i J i = 1 σi aba aa b (5.166) J 1 = 1 (a 1a + a a 1 ), J = i (a 1a a a 1 ), J 3 = 1 (N 1 N ) (5.167) J ± = J 1 ± ij J + = a 1a, J = a a 1 (5.168) [J +.J ] = [a 1a, a a 1 ] = a 1[a, a ]a 1 + a [a 1, a 1 ]a = N 1 N = J 3 (5.169) [J +, J ] = J 3 (5.170) [J 3, J + ] = J +, [J 3, J ] = J (5.171) J i SO(3)

SO(3) 78. Casimir Casimir J = J3 + 1 (J +J + J J ) = J3 J 3 + J + J = 1 4 (N 1 N ) 1 (N 1 N ) + a 1a a a 1 = 1 4 (N 1 N ) 1 (N 1 N ) + N 1 (N + 1) = 1 4 (N 1 + N ) + 1 (N 1 + N ) = N (N + 1) (5.17) J i J i N [J i, H] = ħ[j i, N] = 0 (5.173) J J 3 H J N j J = j(j + 1) N = j 3. p 1 q = 1 p!q! (a + 1 ) p (a + ) q 0 1 0 (5.174) N p 1 q = p + q p 1 q, J 3 p 1 q = 1 (p q) p 1 q (5.175) j, m p 1 q, j = 1 (p + q), m = 1 (p q), p = j + m, q = j m (5.176) J i j j 1 Z j 0 j p + q = j p, q 0 j + 1 j m j J + j, m = a 1a p 1 q = p + 1 p + 1 1 q q 1 = (p + 1)q j, m + 1 (5.177) j, m + 1 J + j, m = (p + 1)q = (j + m + 1)(j m) (5.178) j, m 1 J j, m = (q + 1)p = (j m + 1)(j + m) (5.179) j m J 3 j, m = mδ jj δ mm (5.180)

SO(3) 79 5.8.3 U(1) SU() U() U(1) U(1) U(1) a i U(1) e iϕ : a i e iϕ a i (5.181) U(1) e iϕ : j, m e (p+q)iϕ j, m = e jiϕ j, m (5.18) U(1) ϕ N = j U(1) 5.9 5.9.1 weight j, m J 3 weight j highest weight highest weight weight J 3 weight highest weight j j weight (diagram) weight lattice J ± (root)

SO(3) 80 weight 5.9. j = 1 weight highest weight j 1, j j 1, m 1, j, m (5.183) j, m 1 = ((j + m)(j m + 1)) 1 J j, m (5.184) j, m + 1 = ((j m)(j + m + 1)) 1 J+ j, m (5.185) 1. j 1, m 1 j, m (5.186) (j 1 + 1)(j + 1)

SO(3) 81. ˆR θ ( j 1, m 1 j, m ) = ( ˆR θ j 1, m 1 )( ˆR θ j, m ) (5.187) ˆR = 1 i ϵĵ (1 i ϵĵ)( j 1, m 1 j, m ) = ((1 i ϵĵ) j 1, m 1 )((1 i ϵĵ) j, m ) = j 1, ( m 1 j, m ) i ϵ (Ĵ j 1, m 1 ) j, m + j 1, m 1 (Ĵ j, m ) + O(ϵ ) 1 19 (5.188) Ĵ( j 1, m 1 j, m ) = (Ĵ j 1, m 1 ) j, m + j 1, m 1 (Ĵ j, m ) (5.189) Ĵ = Ĵ(1) + Ĵ() (5.19) J (i) j i, m i J 0 3. J highest weight state Ĵ3 = Ĵ (1) 3 + Ĵ () 3 (5.193) J 3 J highest weight state m = j max j max, j max T = j 1, j 1 j, j (5.194) J 3 m = j 1 + j j max = j 1 + j 1 Ĵ = Ĵ(1) + Ĵ() (5.195) j max + 1 V jmax = V j1 +j 19 j 1, m 1 j, m (5.190) J = J (1) 1 + 1 J () (5.191) 0 ħ 1 m j 1 + j

SO(3) 8 4. Second highest weight state: Ĵ3 m = j max 1 j 1, j 1 1 j, j, j 1, j 1 j, j 1 (5.196) V j1 +j J j 1, j 1 j, j = j 1 j 1, j 1 1 j, j + j j 1, j 1 j, j 1 (5.197) j j 1, j 1 1 j, j j 1 j 1, j 1 j, j 1 (5.198) Ĵ+ = Ĵ(1) + +Ĵ() + 0 highest weight state j max 1, j max 1 T (5.199) Ĵ (j max 1) + 1 = (j 1 + j 1) + 1 V j1 +j 1 5. V j1 V j = V j1 +j V j1 +j 1 V j1 j (5.00) j 1 j = (j ( 1 + j ) + 1 + (j 1 + j 1) + 1 + j 1 j + 1 ) = (1 j 1 + j ) (1 j 1 j 1 ) = (j 1 + j + 1) ( j 1 j ) = (j 1 + j + j 1 j + 1)(j 1 + j j 1 j + 1) = (j 1 + 1)(j + 1) (5.01) 5.9.3 1)j = 1 j = 1 m (highest weight state) 1, 1 = 1, 1 1, 1 (5.0)

SO(3) 83 J 1, 1 = 1, 1, J + 1, 1 = 1, 1 (5.03) J 1, 1 = 1, 0, J 1, 0 = 1, 1 (5.04) m (highest weight state) J J 1, 1 = J ( 1, 1 1, 1 ) = 1, 1 1, 1 + 1, 1 1, 1 (5.05) 1, 0 = 1 ( 1, 1 1, 1 + 1, 1 1, 1 ) (5.06) 0, 0 = 1 ( 1, 1 1, 1 1, 1 1, 1 ) (5.07) J 1, 0 = 1 ( 1, 1 1, 1 + 1, 1 1, 1 ) = 1, 1 1, 1 (5.08) 1, 1 = 1, 1 1, 1 (5.09) 1, 1 =, 1, 1 = (5.10) 1 1. j = 0 0, 0 = 1 ( ) (5.11). j = 1 1, 1 = 1, 0 = 1 ( + ) 1, 1 = (5.1) 3. V 1 V 1 = V 0 V 1 (5.13)

SO(3) 84 5.9.4 )j = 1 j = 1 3, 1 = 1 3 J 3, 3 3, 1 = 1 J 3, 1 3, 3 = 1 3 J 3, 1 (5.14) J 1, 1 = 1, 0, J 1, 0 = 1, 1 (5.15) m (highest weight state) J 3, 3 = 1, 1 1, 1 (5.16) J 3, 3 = J ( 1, 1 1, 1 ) = 1, 0 1, 1 + 1, 1 1, 1 (5.17) 3, 1 = 3 1, 0 1, 1 + 1 3 1, 1 1, 1 (5.18) 1, 1 = 1 1, 0 1, 1 1, 1 1, 1 (5.19) 3 3 J 3, 1 = ( 1, 1 1, 1 + 1, 0 1, 1 ) + 1, 0 1, 1 3 3 1 = ( 1, 1 1, 1 + 1, 0 1, 1 ) (5.0) 3 3 3, 1 = 1 1, 1 1, 1 + 1, 0 1, 1 (5.1) 3 3 J 3, 1 = 1 1, 1 1, 1 + 4 1, 1 1, 1 3 3 = 3 1, 1 1, 1 = 3 3, 3 (5.) 3, 3 = 1, 1 1, 1 (5.3) j = 1 J J 1, 1 = 1 4 3 3 3 (5.4)

SO(3) 85 1, 1 = 1, 1 1, 1 1 1, 0 1, 1 (5.5) 3 3 3, 1 J 0 V 1 V 1 = V 3 V 1 (5.6) 5.9.5 3 1 1. V 3 m m = ( 3, 1, 1, 3) V 1 m m = ( 1, 1) j, m. 3 3, 3 1 m 1 3. 1. j = 3 j = 1

SO(3) 86 V 3 V 1. j = 1 = V V 1 (5.7) V 1 V 1 = V V 1 V 0 3 3 = 5 + 3 + 1 (5.8) 5.10 5.10.1 E E 3 E i B i v i (x) T R v i (x) = R ij Rv j = e iu (l+l) v i (x) (5.9) R = D 1, J k = l k + L k (5.30) T R v i (x) = e iu J v i (x) (5.31) J l, m 1, m ħ,ħ

SO(3) 87 ( ) ψ 1 ψ = = (ψ α ) (5.3) ψ ψ 1 ψ T R ψ = e iu J ψ (5.33) J = l + S = (l k + 1 σ k) (5.34) Y lm 1, s 5.11 (Wigner-Eckart theorem) 5.11.1 (Clebsch-Gordan coefficients) highest weight j 1 j j 1 j J j 1 + j J, M = j 1, m 1 j, m j 1, m 1 ; j, m J, M (5.35) m 1,(m 1 +m =M) j 1, m 1 ; j, m J, M j 1, m 1 ; j m = j 1, m 1 j, m (5.36) J, M δ JJ δ MM = m 1 J M j 1 m 1 ; j m j 1 m 1 ; j m JM (5.37) M JM JM V J j 1 j J j 1 + j δ m1 m 1 δ m m = M j 1 m 1 ; j m JM JM j 1 m 1; j m (5.38) 5.11. n H n = E n n (5.39)

SO(3) 88 H + H n + E + E (H + H)( n + ) = (E + E)( n + ) (5.40) 1 H n + H = E n + E (5.41) n H m m = n m n n H n = E (5.4) m H n = (E n E m ) m (5.43) m H z H = Kz K H j = 1 5.11.3 ˆT ˆR ˆT n ˆR 1 = ˆT m D mn ( ˆR) (5.44) ψ ˆR ˆR ψ ˆT ˆR ˆT ˆR 1 ˆT ψ ˆR ˆR ˆT ψ (5.45) ˆT j 1 n 1 highest weight j 1 ˆR( ˆT j 1 n 1 j, n ) = ˆT j 1 n 1 j, n D (j 1) m 1 n 1 D (j 1) m n (5.46) V j1 V j T : J, M = j 1, m 1 ; j, m J, M ˆT j 1 m 1 j, m (5.47) ˆT j n m 1,(m 1 +m =M) j, n J T : J, M M J T : J, M = J T J J, M (5.48)

SO(3) 89 ˆT j 1 m 1 j, m = J,m J, m 1 + m j 1, m 1 ; j, m T : J, m 1 + m (5.49) ˆT J, M ˆT j 1 m 1 j, m = J, m 1 + m j 1, m 1 ; j, m J T J δ M,m1 +m (5.50) highest weight J T J = J, J T J, J (5.51) 5.1 ( ) H 0 n = ε n n (5.5) H, H + λh H 0 (H 0 + λh )( n + λ m c m m ) = (ε n + λε )( n + λ m c m m ) (5.53) λ = 0 eq.(5.5) ε k, λ λ λ k H n + c m λ k H 0 m = λε k n + λε n c m k m (5.54) m m ε = n H n (5.55) Example : L l m l, m l + 1 z λh = λp A = λbl z (5.56) m ε = l, m H l, m = Bm (5.57)

SO(3) 90 5.1.1 1 e iħ p ψ = Hψ, H = (5.58) t m e p µ = (H, p) (p µ ea µ ) = (H + eϕ, p e A) (5.59) 1 m e ( p e A) = 1 m e ( p e( p A + A p) + e A ) (5.60) A = 1 B( y, x, 0) (5.61) B = rot A = (0, 0, B) (5.6) z A div A = 0 p A + A p = A p = B(xp y yp x ) = BL z = B L (5.63) H = 1 p + eϕ e B e B L + (x + y ) (5.64) m e m e 8m e M L = e m e L (5.65). M L B 1 M = e ( L m + S) (5.66) e 1 M = e m e ( L + g S) (5.67) g g g (g-factor)

SO(3) 91 g-factor g-factor g-

9 p File: miniexam13.txt 1. Ĵ1, Ĵ, Ĵ3 [Ĵi, Ĵj] = iϵ ijk Ĵ k Ĵ ± = Ĵ1 ± iĵ (5.68) [Ĵ3, Ĵ±] = ±Ĵ±, (5.69) (a) z ϕ ˆR ϕ (b) [Ĵ+, Ĵ ] = Ĵ3 (5.70) (c) Ĵ3 m Ĵ 3 m = m m, m m = δ mm (5.71) m = m ± 1 m Ĵ± m (d) 1 Ĵ1,Ĵ,Ĵ3,Ĵ±

93 6 S = dtl(q, q) (6.1) p i = L q i, H = p i q i L(q, q), q = q(q, p) (6.) S = dt(p i q i H(q, p), (6.3) δs = dtδp i ( q i H p i ) + δq i ( ṗ i H q i ) (6.4) q i = H p i, ṗ i = H q i (6.5) f = {f, H} = f H f H (6.6) q a p a p a q a p i dq i Hdt = P i dq i H dt + d(w (Q, p, t) + p i q i ) (6.7) (p, Q) q i dp i Hdt = P i dq i H dt + W Q i dqi + W p i dp i + W t q i = W p i, P i = W Q i, H = H W t dt (6.8) (6.9) (q, p) (Q, P ) {f(q, p), g(q, p)} p.q = {f(q(q, P ), p(q, P )), g(q(q, P ), p(q, P ))} P,Q (6.10)

94 W = p i f i (Q) (6.11) q i = f i (Q), P i = p j f j Q i (6.1) W = p i a i jq j (6.13) q i = a i jq j, P i = p j a j i (6.14) a i j,z cos ϕ sin ϕ 0 a i j = sin ϕ cos ϕ 0 (6.15) 0 0 1 W ϕ (p, Q) = p 1 (cos ϕq 1 sin ϕq ) p (sin ϕq 1 + cos ϕq ) p 3 Q 3 (6.16) 6.0. ϕ 1 ϕ W ϕ = W 0 + W ϕ ϕ δϕ = p 1Q i (p 1 Q p Q 1 )δϕ = W 0 + L 3 δϕ (6.17) δq i = W p i Q i = L 3 p i = {q i, L 3 }δϕ, δp i = {P i, L 3 } (6.18) δf = {f, L 3 }δϕ = f ϕ = {f, L 3} (6.19) δ ϕ if = {f, L i }δϕ i (6.0) W = W 0 + K a δϕ a (6.1)