charpter0.PDF

Similar documents

重力方向に基づくコントローラの向き決定方法

表題.PDF


Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc

all.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

卒業論文

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Gmech08.dvi

28 Horizontal angle correction using straight line detection in an equirectangular image

J. Jpn. Inst. Light Met. 65(6): (2015)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

鉄鋼協会プレゼン

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

7章 構造物の応答値の算定

bousai.dvi

meiji_resume_1.PDF

Gmech08.dvi


q w e q w e r

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

The Physics of Atmospheres CAPTER :

修士論文

タイトル



1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

( ) ,

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

I II III IV V

総研大恒星進化概要.dvi


JIS Z803: (substitution method) 3 LCR LCR GPIB

™¼fi⁄CTPŠp

™¼fi⁄CTPŠp

™¼fi⁄10„”Šp


™¼fi⁄PDFŠp

JFE.dvi

2章.doc


空気の屈折率変調を光学的に検出する超指向性マイクロホン

all.dvi

untitled

22 Robust Control of belt driving two inertial systems with consideration of load inertial variation

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

LD

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

Contents 1 Jeans (


untitled

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

bc0710_010_015.indd

鉄筋単体の座屈モデル(HP用).doc

85 4

TOP URL 1

DocuPrint C5450 ユーザーズガイド

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


1

2

Template For The Preparation Of Papers For On-Line Publishing In JSME

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

,,..,. 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

<Measurements of Isobaric Boiling Point Curves at High and Low Pressures> Received on July 12, 1968 ** Kazuo Kojima (Dept. Eng. Chem., Nihon Univ., To

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30


橡博論表紙.PDF

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

untitled

mt_4.dvi

D:/tmp/jemic_g.dvi

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -



1 (1) (2)

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

Transcription:

Kutateladze Zuber C 0 C 1 r eq

q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4]

A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V : v 1 : T sat : (=T w T sat ) T sub : (=T sat T b ) c : : : D : Taylor H : Helmholtz ( ) 11 : = l : v : : d : 16 eq :

l : sat : sub : v : w :

Kutateladze Zuber

C 0 C 1 r eq

q CHF A v /A w A v /A w q CHF

[1]

[2] q CHF A v /A w

[3]

[4]

(CHF) CHF CHF

1950 Kutateladze[1] (1.2.1) q CHF 1 4 σg ( ρ ) l ρv = K1ρ vh fg 2 (1.2.1) ρv K 1 K 1 = 0.130.19 1959 Zuber[2] Taylor Helmholtz CHF (1.2.2) q CHF 1 4 σg ( ρ ) l ρv = 0.131ρ vh fg 2 (1.2.2) ρv Vapor Steam Fig. 1.2.1 Zuber

Kutaterladze Zuber CHF 1960 Gartner & Westwater[3] 1968 [4] CHF CHF (1.2.3) d q CHF ρδ l ch fg 1 A τ (1.2.3) = v Aw (1.2.3) 1976 [5] Davidoson [6] d (1.2.4) 1 ( ξρl + ρv ) ( ρ ρ ) 3 5 1 v 5 1 3 5 4 d 4 g τ = (1.2.4) π l v =11/16 v 1 V q = v1 t, v1 = Aw (1.2.5) ρv H fg

1983 [7] Helmholtz Helmholtz H 1/4 (1.2.6) c 2 ρ 2 v + ρl Av 2 δ = 0.5 ( ) c πσ ρv H fg q (1.2.6) CHF ρvρl Aw d (1.2.4) (1.2.7) q v = 1 ρ H (1.2.7) λ 2 D v fg D Taylor 1 σ λ 3 2 ( ) D = π 2 (1.2.8) g ρl ρv (1.2.4) (1.2.6) (1.2.8) (1.2.3) q CHF (1.2.9) q CHF 4 π = 11 2 3 2 1 16 A A v w 5 8 1 A A v w 5 16 ρl ρv + 1 11 ρl 16 ρv + 5 3 5 1 16 ρ H v fg gσ ρ 1 ( ρ ρ ) 4 l 2 v v (1.2.9) (1.2.9) A v /A w (1.2.9)Zuber (1.2.2) A v /A w (1.2.10) A A v w 11 ρl = 0.0654 16 ρv + 1 3 5 ρl ρv + 1 1 2 (1.2.10) v / l 1 (1.2.10)

A A v w ρ v = 0.0584 ρl 0.2 (1.2.11) (1.2.9) (1.2.11) Vapor Bubble c Fig. 1.2.2

CHF

Fig.2.1.1Fig.2.1.2 Fig.2.1.1 Fig.2.1.2

Fig.2.1.3

High Speed Video Camera Universal Scanner Digital Multi Meter Computer Ice Box V Flow Meter Cooling Water Outlet Condenser High Speed Video Camera Fixed Thermocouple Movable Thermocouples Auxiliary Heater Light PID controller AC100V Copper Block Catridge Heater Ice Box Select Switch Slidac Multi-Point Recorder Digital Multi Meter AC100V Fig. 2.1.3

160mm 160mm 180mm [1] 45 10mm 4mm 0.6mm [1] 100V, 500W5 0.5mm CA 3

PID 8mm 1mm 110mm 7 6mm 1mm 50mm 9 1.6mm CA 1 SHIMADEN SR64 SHIMADEN PAC15P 30A CA x = 0mm, 5mm, 10mm, 20mm, 30mm, 40mm Scanner CA 0.2mm Scanner Takeda Riken TR7200 7562 NEC PC-9801RA

CHF ER6 10 500W 1 PHOTRON

CHF CHF CHF 0, 2/0, 3/0, 4/0 CHF 0 30

PID 10 1. 20V 5V CHF CHF 1V 2. CHF 10V 2V CHF CHF 1V 10 3 2 2 648 0.001 6 z = 0.5mm, 1mm, 2mm, 3mm, 5mm, 10mm, 15mm, 20mm, 22mm 1 20

Fig.2.3.1 r eq r 1 R r 2 r 3 Copper Block Fig.2.3.1 T q = λ (2.3.1) T q A = const (2.3.3) 2 T r = const r (2.3.3) (2.3.4) C T = + r 0 C1 (2.3.2) (2.3.3) (2.3.4) q w T w r eq (2.3.5) C0 Tw = + C1 (2.3.5) r eq (2.3.1) (2.3.5) (2.3.6) C0 qw = qeq = λ 2 r eq (2.3.6)

3 1, 2, 3 r 1, r 2, r 3 T 1, T 2, T 3 (2.3.4) C 0, C 1 (2.3.7), (2.3.8) C 3 i i= 1 0 = 3 ( x x)( T T) 2 ( xi x) i= 1 C1 0 i (2.3.7) = T C x (2.3.8) 3 3 1 1 1 xi = x = x i T = r 3 3 i i= 1 T i i= 1 r 1 =16.17mm, r 2 =20.15mm, r 3 =24.14mm

Q w = Q eq (2.3.9) Q = A q (2.3.10) w eq w eq w Q = A q (2.3.11) eq (2.3.9)(2.3.10)(2.3.11) (2.3.12) A w = A eq (2.3.12) 2 A w = πr (2.3.13) (2.3.14) A eq = 2πr eq 1 cos 2 2 θ (2.3.14) (2.3.12)(2.3.13)(2.3.14) (2.3.15) R r eq = (2.3.15) θ 2sin 4 =45 (2.3.15) (2.3.16) r eq = 2. 563R (2.3.16) (2.3.5)~(2.3.8), (2.3.16) [2]

Tsub 0 K 20 K 40 K 60 K App.2

073 10 5 CHF CHF CHF CHF CHF CHF 4% CHF CHF 0K~73K CHF I. II. T sub =0, 10, 15K Fig.3.1.1~Fig.3.1.3 T sub =20, 25, 35, 45, 55K Fig.3.1.4~Fig.3.1.8 III. T sub =65, 73K Fig.3.1.9~Fig.3.1.10

[5] A A a A A A B A a A T sub = 0K T sub = 10K T sub = 15K A, a B a A B a A B

T sub =0, 10K

CHF d d d d Fig.3.2.1 State 1 State 2 State 3 State 4 State 5 Fig.3.2.1 d [5] [5]

Fig.3.2.2 d T 2 State 1 State 2 State 6 Former Bubble Former Bubble State 3 State 4 Study Object State 5 Study Object Study Object T 1 T 1 T 2 T T Waiting Time Macro-layer Consuming Time Cycle T 2 Fig.3.2.2 A Time Dividing Method in CHF Analysis Using Macrolayer Thinning Model State 1 State 2 State 3 State 4 State 5 State 6 T 1 T 2 T=T 1 +T 2 [4]

d d A a B A a B Fig.3.3.1 A d A c A a B t Fig.3.3.1 A a B a B A CHF A a B A d t 2 3.3.1 T, T 1, T 2 Fig.3.3.2~Fig.3.3.4 3.3.1 T sub (K) 0 10 15 20 25 35 45 55 15 19 20 35 34 33 56 50

Fig.3.3.2

Fig.3.3.3

Fig.3.3.4

+ = fg sub p v l sat CHF sub CHF H T C q q 0.8,, 0.065 1 ρ ρ + = fg sub p v l sat CHF sub CHF H T C q q 4 3,, 0.102 1 ρ ρ

Fig.4.1.1

(1.2.4)(1.2.5) (1.2.3) (4.2.1) l v v q = ( ) 3 CHF 0.00171πσH fg 1 + ρ ρv H ρv fg 2 1 ρ 0.0584 ρl 0.2 ρ ρl 0.4 1 3 1 τd (4.2.1) (4.2.1) d CHF Fig.4.2.1 [2] Fig.4.2.1 T sub = 45K 2 (1.2.3) (1.2.4) (1.2.5)Zuber (1.2.5) A v /A w v/ l

Experimental Calculated Fig.4.2.1 CHF in pool boiling as a function of liquid subcooling. Result for water

(1.2.5) A v /A w (1.2.4) (1.2.3) (4.3.1) A A v w 2 1 A A v w = πσh fg 2τ q 1 + d ρ ρ l v 3 ( ρ H ) 2 v fg (4.3.1) (4.3.1) H fg v l d T 2 q State 1 State 2 State 6 Former Bubble Former Bubble State 3 State 4 Study Object State 5 Study Object Study Object q 1,T 1 q CHF,T q 2,T 2 Fig.4.3.1 Relationship between q 1, q 2, and experimentally measured q CHF Fig4.3.1 q 1 T 1 q 2 T 2 q CHF q 1 q 2 T1 T2 q CHF = q1 + q2 (4.3.2) T T (4.3.1) q (4.3.2)q 2 (4.3.1)q q CHF q 2

100 c 100 c 100 c c c T1 T b T b T b 100Front Line T w 100Front Line c c c q 3,T 3 q 4,T 4 q 1,T 1 Fig.4.3.2 A guessed macro-layer evaporation mechanism T 3 100 c T 4 100 c T 3 +T 4 T 1 T 3 q 3 T 4 q 4 q 2 q CHF T3 = q3 + T T3 = q3 + T T3 = q3 + T T4 T2 q4 + q T T T4 T2 q2 + q T T T T3 q2 T 2 2 (4.3.3)

q q 2 CHF q T qchf T T T T = 3 3 1 (4.3.4) 3 q 3 T 3 q 3 T 3 q 2 /q CHF 4.3.1 4.3.1 q 2 /q CHF t sub =10K q 2 q CHF (4.3.1) 10% (4.3.1)q q CHF A v /A w Fig4.3.3 Fig.4.3.3 A v /A w A v /A w q CHF Fig.4.3.3 q CHF A v /A w q CHF (4.3.4)

4.3.1

T sub 0K 10K 15K 20K 25K 35K 45K 55K Haramura-Katto [4] Fig.4.3.3 A v /A w as a function of CHF in subcooled pool boiling

Fig.4.3.3 A v /A w q CHF (1.2.4) c q CHF c q -2 CHF c q CHF T sub = 0K 25K Fig.4.4.1 T sub = 25K T sub = 0K T sub = 0K T sub = 25K q CHF,Tsub= 0K = 1.483 MW/m 2 q CHF,Tsub= 25K =2.772 MW/m 2 c,tsub= 25K c,tsub= 0K 13.5 13.5 T sub = 0K Fig.4.4.2 T sub = 25K B C T sub = 25K t = 4.6 ms, t = 6.2 ms D,E T sub = 0K A t = 0 t = 0 T sub = 0 K T sub = 0K T sub = 25K 1 c δc q 2

In The Case of Saturate Boiling A D E C B Calculated Value With Haramura- Katto Model Fig.4.4.1 Bubble volume growing with time

Tsub=0~73 K () T sub 55K ) A v /A w q CHF ) CHF ) CHF a) b) () T sub 55K (1),) CHF

[1] S.S.Kutateladze, Zh. Tekh. Fiz.,20,p.1389,1950 [2] N.Zuber, USAEC Report AECU 4439, 1959 [3] R.F.Gaertner and J.W.Westwater, Chem. Eng. Prog. Symposium Ser., No.30, Vol.56, pp.39, 1960 [4] Y.Katto and S.Yokoya, Int.J.Heat Mass Transfer, Vol.11, No.6, pp.993-1002, 1968 [5] Y.Katto and S.Yokoya, Heat Transfer-Japanese Research, Vol.5, No.2, pp.43 65, 1976 [6] J.F.Davidson and B.O.G.Schueler, Trans. Inst. Chem. Engr., Vol.38, pp.335, 1960 [7] Y.Haramura and Y.Katto, Int.J.Heat Mass Transfer, Vol.26, No.3, pp.389-399, 1983 [8] S.S.Kutateladze, Isv.Akad.Nauk, S.S.S.R, Otd.Tekh.Nauk, No.4, p.529, 1951 [9] H.J.Ivey and D.J.Morris, UKAEA Report No.AEEW-R 137, 1962 [10] M.Shoji, S.Yokoya and Z.L.Huang, Trans. JSME, Vol.58, No.551, pp174-180, 1992