Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Similar documents

QMI13a.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

IA

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,



Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

The Physics of Atmospheres CAPTER :

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

30

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

振動と波動

Maxwell

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ) AGD 2) 7) 1

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

0406_total.pdf

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

( )

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

QMI_10.dvi

QMI_09.dvi

19 /

note4.dvi

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K



..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

meiji_resume_1.PDF

II

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

YITP50.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

untitled

note1.dvi

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

main.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

b3e2003.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

Anderson ( ) Anderson / 14

構造と連続体の力学基礎


OHP.dvi

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

ito.dvi

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

~nabe/lecture/index.html 2

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

量子力学 問題

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

LLG-R8.Nisus.pdf

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

phs.dvi

main.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

I II III 28 29

Einstein ( ) YITP

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


Part () () Γ Part ,

( ) ,

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

Note.tex 2008/09/19( )

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

Transcription:

hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2................................... 10 3.3........................................ 12 3.4................................................. 13 3.5......................................... 17 4 18 4.1.......................................... 19 4.2.................................... 20 4.3................................................. 20 5 21 5.1.............................. 21 5.2................................................. 21 5.3.......................................... 22 6 23 1 1

Hilbert, von Neuman 4 1. 2. 5.3 1.1 19 1 10 11 [1, p.86] kt 2 1 [1, 2] 2 2

1.1 ( ) 1.2 n 2 3 [1, 3] 2 3 3

5.3 4 5 q(t) t t = 0 q(0) dq (0) dt 6 7 q i (t) p i (t) i = 1, 2,..., n n n- (q 1 (t), q 2 (t),..., q n (t)) q(t) (p 1 (t), p 2 (t),..., p n (t)) p(t) (q(t), p(t)) 2.1 ( ) n- q i (t) p i (t) i = 1, 2,..., n (q(t), p(t)) i = 1, 2,..., n dp i dt = H(q, p) q i, dq i dt = H(q, p) p i (2.1) H(q, p) 4 5 6 3.1 7 4

(1) (2) V (q) V (q) m > 0 V (q) ω > 0 H(q, p) = p2 + V (q) (2.2) 2m V (q) = mω2 2 q2 (2.3) 3 von Neuman 8 5.3 8 3.4 [4] 5

3.5 9 3.1 3.1 3.3 3.4 3.1 3.1 3.4 3.5 3.1 ( I ) H 1 state 3.2 (Dirac I) Dirac [5] 1. H ψ φ 2. H H H ψ ψ 3. ψ φ ψ, φ ψ φ 3.3 ( 3.1 ) 3.1 3.1 ψ e iα ψ α R ray ψ ψ 3.1 10 3.3 3.5 3.4 ( II ) (a) observable H (b) I 9 10 3.4.6 6

operator (a) 3.5 (b) 1.1 (2.2) q p q p 3.2 qp ˆq, ˆp (ˆqˆp + ˆpˆq)/2 ψ Â 11 3.5 ( III ) (a) ψ Â Â (b) Â Â = d ˆP A (a) a (3.1) (a 1, a 2 ] ψ, { ˆPA (a 2 ) ˆP A (a 1 ) } ψ (3.2) 3.5 3.5 3.6 ( I) ψ Â ψ 3.5 ψ ψ ψ 3.5 ψ 3.5 12 3.5 11 3.22 12 7

ψ 3.5 II 3.7 3.5  ψ ψ  ψ 3.6 ψ  ψ = ψ, d ˆP A (a)ψ a (3.3) (q, p) {a n } n 13 ψ a n ψ, ˆP n ψ 3.1 3.4 3.5 3.1.1 Dirac Dirac Dirac  = ˆP n a n + d ˆP (a) a (3.4) n ˆP n  a n ˆP (a)  a 11 11 = n ˆP n + d ˆP (a) (3.5) ψ ψ = n ˆP n ψ + d ˆP (a) ψ (3.6) ψ  3.5 a n ψ, ˆP n ψ a ψ, d ˆP (a)ψ 13 8

Dirac Dirac 3.8 (Dirac II) Dirac 3.2 1. ϕ ˆP ϕ ˆP ϕ = ϕ ϕ ϕ ϕ ψ ϕ - ˆP ϕ ψ = ϕ ϕ ψ = ϕ ψ ϕ 2.  ϕ n a n ϕ n ϕ n ϕ n ϕ n a n a n ϕ n,m m ˆP n m ϕ n,m ϕ n,m 3. d ˆP (a) da ϕ(a) ϕ(a) d ˆP (a) da ϕ(a) ϕ(a) 4. ϕ(a) a n ϕ(a) a  a a, k k a 3.9 Dirac a (3.4) (3.6)  = a n a n a n + da a a a (3.7) n 11 = n ψ = n a n a n + a n ψ a n + da a a (3.8) da a ψ a (3.9) (3.9) a n ψ a ψ (3.7) (3.8) ψ  3.5 a n a n ψ 2 14 a a ψ 2 3.9 (Gelfand ) Dirac Dirac a a H H H Gelfand S(R n ) H = L 2 (R n ) S (R n ) [6] 14 k a n, k ψ 2 9

3.2 3.1 H H H 5.1 [7, 16.5] Â ˆB commutator [Â, ˆB] := Â ˆB ˆBÂ (3.10) q p 2 3.16 3.4 3.10 ( CCR) n- 15 ˆq j ˆp j Canonical Commutation Relation CCR [ˆq j, ˆp k ] = i δ j,k (3.11) [ˆq j, ˆq k ] = [ˆp j, ˆp k ] = 0 (3.12) j = 1, 2,..., n k = 1, 2,..., n 16 1.0545887 10 34 J sec (3.13) i i 11 i δ j,k { 1 (j = k) δ j,k = 0 (j k) CCR 3.11 ( ) Poisson {, } [, ] {A, B} = 1 [Â, ˆB] i q j p k Poisson δ j,k 3.11 3.10 (3.14) trace ˆq j ˆp j 17 ˆq, ˆp H 15 H 16 2π 17 ˆq, ˆp CCR ˆq n ˆp ˆpˆq n = in n ˆq n 1 n ˆq n 1 n 2 ˆq n ˆp ˆq n ˆq n 1 ˆq n n 2 ˆq ˆp n [7, p.318] 10

CCR H CCR CCR 3.12 ( Schrödinger ) H L 2 (R n ) j = 1, 2,..., n ˆq j : ψ(q) q j ψ(q) (3.15) {ψ(q) L 2 (R n ) : q j ψ(q) L 2 (R n )} (3.16) ˆp j : ψ(q) i ψ(q) q j (3.17) {ψ(q) L 2 (R n ) : ψ(q) ψ(q) q j L 2 (R n )} (3.18) CCR Schrödinger (Schrödinger representation) 18 CCR H S(R n ) ˆq j ˆp j CCR Schrödinger j CCR H 3.13 (Rellich-Dixmier) H ˆq, ˆp 1. H 2. ˆq, ˆp H Ω [ˆq, ˆp] = i 3. Ω ˆq 2 + ˆp 2 ˆq, ˆp CCR Schrödinger Schrödinger CCR Weyl 3.14 ( Weyl ) Û(a) ˆV (b) a, b R Weyl Û(a) ˆV (b) = ˆV (b)û(a)e iab Û(a)Û(b) = Û(a + b), ˆV (a) ˆV (b) = ˆV (a + b) (3.19) 18 Dirac 3.8 ˆq q ψ(q) q ψ 11

a, b CCR Weyl Û(a) ˆV (b) ˆq ˆp Û(a) := e iaˆq, ˆV (b) := e ibˆp (3.20) CCR (3.19) H 3.15 (von Neuman) Hilbert CCR Weyl CCR Schrödinger CCR Schrödinger CCR Schrödinger 3.16 r p r CCR CCR Schrödinger (, ) r 0 t H H 3.3 3.3.1 ψ Â Â ψ, Âψ (3.21) 3.17 ( ) Ô ψ Ô Ô (Ô Ô ) 2 1/2 ψ ψ ψ (3.22) Â, ˆB ψ Â ˆB 1 2 [Â, ˆB] (3.23) ψ ˆq ˆp Schwartz t R ˆq j ˆp k 2 δ j,k (3.24) φ ( Â + it ˆB ) ψ (3.25) ( ) 2 Â ˆB Â Â ψ ˆB ˆB ψ 12

3.3.2 Â Â 3.6 3.17 ψ Â ˆB (3.24) Â ˆB ψ Â ˆB 3.6 Â ˆB 3.5 3.3.3 3.1 3.1 (3.13) (3.24) 1.2 k p p = k 3.1 3.1 3.1 Heisenberg [8] 3.4 3.1 3.3 3.4.7 13

Schrödinger picture Heisenberg picture interaction picture Schrödinger picture Schrödinger picture Schrödinger representation 3.4.1 Schrödinger picture 3.18 ( Schrödinger picture) Ĥ Schrödinger t ψ(t) i d ψ(t) = Ĥ ψ(t) (3.26) dt Ĥ 3.4 ˆq ˆp 3.19 ( ) 1. picture CCR representation 2. Schrödinger (3.26) (3.26) Schrödinger H 19 (3.26) (3.26) ) (Ĥt ψ(t) = exp ψ(0) (3.27) i dp H (Ĥt ) exp i exp ( ) Et dp H (E) (3.28) i (3.26) H (3.27) 3.4.2 pictures Schrödinger picture Heisenberg Picture Interaction picture 3.1 Schrödinger picture Schrödinger picture 19 (2.2) ˆp2 2 Schrödinger 3.12 14

3.20 ( Heisenberg picture) i d dtâh(t) = [ÂH Ĥ] (t), (3.29) ( ) (Ĥt )  H (t) = exp Ĥt  H (0) exp i i (3.29) (3.30) Schrödinger picture Heisenberg picture 3.21 ( ) (3.30) (3.29) d A(t) = {A(t), H} (3.31) dt {, } Poisson 3.11 3.20 3.11 3.11 (3.31) 3.20 Heisenberg picture Schrödinger picture 3.18 3.11 Interaction Picture Ĥ = Ĥ0 + Ĥint (3.32) Ĥ0 Ĥ0 Ĥint eĥt/(i ) (Ĥt ) ) ) (Ĥ0 t (Ĥint t exp = exp exp i i i ( ) ) (Ĥ0  int (t) = exp Ĥ0t t  int (0) exp i i ψ(t) int = exp (Ĥint t i (3.33) (3.34) ) ψ(0) int (3.35) Ĥ0 Ĥint (3.34) i d dt ψ(t) = Ĥint(t) ψ(t) (3.36) Ĥint(t) (3.34) (3.36) chronological exponential 20 [ ( ) n 1 t tn ] t2 ψ(t) int = dt n dt n 1 dt 1 Ĥ int (t n )Ĥint(t n 1 ) i Ĥint(t 1 ) ψ(0) int 0 0 0 n=0 20 (3.37) 15

{ 1 T-exp i t 0 } dsĥint(s) 3.4.3 (3.27) ψ(t) ψ(t) = ψ(0) ψ(0) = 1 (3.38) 3.1 t = 0 t > 0 3.4.4 Schrödinger picture ψ Ĥ E Ĥ ψ = E ψ (3.39) ψ(t) = e iet/ ψ (3.40) 3.3 (3.39) Schrödinger 3.4.5  Ĥ [Â, Ĥ ] = 0 (3.41)  1. ψ a  a  2. ψ   1  a 2  ψ t = 0 ψ t = 0  t = 1  t = 0 t = 1  3.5 16

3.4.6 3.1 0 1 21 3.4.7 (3.26) (3.29) Ĥ chronological exponential t = 0 t > 0 3.5 3.5 3.22 ( IV II) ψ   3.5 a n ϕ n ψ  a n ϕ n  3.5 a n 3.5 ψ ψ  ψ 3.5 1920 3.5.1 21 17

3.22 1. 3.4 3.18 (3.27) (3.27) 2. 3.22 ψ Â Â 22 Â 3.5 (3.27) 23 3.18 3.22 24 von Neuman [9, ] Pauli [10] 4 22 4.1.1 23 24 18

4.1 V (q) m Ĥ = ˆp2 + V (q) (4.1) 2m Schrödinger ψ(q, t) = φ(q)e iet/ ψ(q, t) i = 2 2 ψ(q, t) t 2m q 2 + V (q)ψ(q, t) (4.2) Eφ(q) = 2 d 2 φ(q) 2m dq 2 + V (q)φ(q) (4.3) L 2 (R) V (q) V (q) Sturm Liouville [1, 3, 5, 11, 12] 4.1.1 V (q) 0 (4.2) 3.3 t = 0 q = 0 q = 0 Dirac H = L 2 (R) q = 0 ψ(q, 0) π 2 α e q /α (4.4) 0 < α 1 0 q = 0 (, ) 4.1.2 V (q) = mω2 2 q2 n = 0, 1, 2,... Eφ(q) = 2 d 2 φ(q) 2m dq 2 + mω2 2 q2 φ(q) (4.5) E n = ( n + 1 ) ω (4.6) 2 φ n (q) C n H n (x)e x2 /4, x=(2mω/ ) 1/2 q ( ) 1/2 1 (mω ) 1/4 C n (4.7) n! π 19

H n (x) ( 1) n e x2 /2 d n dx e x2 /2 n n {φ n } n H = L 2 (R) 4.2 Ĥ = 2 2m 2 Q2 r (4.8) 2 r Q Q Q E < 0 E 0 E < 0 E n = mq4 2 2 1 n 2 (n = 1, 2,...) (4.9) n E n n 2 E > 0 4.1.2 n E n E m = mq4 2 2 ( 1 n 2 1 ) m 2 (4.10) 25 ( 1 n 2 1 m 2 ) 4.3 [4, 13] [1, 3, 5, 11, 12] 25 Dirac 1920 20

5 5.1 3.1 [5, 25, 35] R ˆR ψ 1 = ˆR ψ 0 (5.1) R ˆR ˆR R R 1 R 2 R 2 R 1 ψ 1 ˆR 1 ( ψ 0 ) (5.2) ψ 0 1 2 = ˆR 2 ( ψ 1 ) = ˆR 2 ˆR 1 ( ψ 0 ) (5.3) ˆR 2 0 1 R 2 R 1 ˆR 2 ˆR 1 H space H spin H total = H space H spin (5.4) H space 3.2 H spin 2n + 1 n 1/2 1/2 SO(3) SU(2) O(3) SU(2) 5.2 3.2 canonical quantization Feynman path integral 1. 21

2. 3. 4. [14, 13] 5.3 5.3.1 5.1 ( ) 1. 2. Dirac 1.2 5.3.2 4 5.3.1 Dirac, Heisenberg Dirac 1.2 22

5.3.3 CCR 26 5.3.2 CPT C - von Neuman 6 [9] [7] [15] 1970 [16] [5, 1, 3, 2, 17] [5] [9, 7] [1, 3, 2] [1, 3] 26 1960 Fock 60 Higgs Weinberg-Salam 2008 23

[17] 5.1 [11, 12] [6, 18, 19, 20] [1]. I., (1977(2e)). [2].., (1977). [3]. II., (1952). [4].., pp. 669 686., (1978). [5] P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford, (1958). [6] Bogoliubov, Lognov, and Todorov. Axiomatic Quantum Field Theory., (1980).. [7].. II, 4, pp. 247 484., (1978). [8].. II, 4, pp. 557 602., (1978). [9] von Neuman. Die Mathematische Grundlagen der Quantenmechanik. Springer, (1932). 1957. [10].., pp. 557 594., (1978). [11] L.D. Landau and I.M. Lifshitz. I II.., (19 ). [12],,,,,,. I. 3., (1978). [13] B. Simon. Functional Integration and Quantum Physics. Academic Press, (1979). [14] R.P. Feynman and Hibbs. Path Integrals and Quantum Mechanics. MacGrow-Hill, (1965). [15]... [16],.., (1978). [17] R.P. Feynman, R.B. Leighton, and M. Sands. Quantum Mechanics. The Feynman Lectures on Physics. Addison-Wesley, (1965). [18] R.F. Streater and A.S. Wightman. PCT, Spin and Statistics, and All That. Benjamin, (1964). [19] R. Fernández, J. Fröhlich, and A.D. Sokal. Random Walks, Critical Phenomena, and Tiviality in Quantum Field Theory. Springer, (1992). [20] O. Brattelli and H. Robinson. C -algebras and Quantum Statistical Mechanics. Springer, (19 ). 24