2/24

Similar documents
GJG160842_O.QXD


さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

プリント

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

snkp-14-2/ky347084220200019175


: , 2.0, 3.0, 2.0, (%) ( 2.

B

本文/目次(裏白)


linearal1.dvi

meiji_resume_1.PDF

201711grade1ouyou.pdf

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Part () () Γ Part ,

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


koji07-01.dvi

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

tnbp59-21_Web:P2/ky132379509610002944

抄録/抄録1    (1)V

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) (, ) ( )

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

日本内科学会雑誌第98巻第4号

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =


Z: Q: R: C: sin 6 5 ζ a, b

日本内科学会雑誌第97巻第7号

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

nsg02-13/ky045059301600033210


(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

newmain.dvi


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

スケーリング理論とはなにか? - --尺度を変えて見えること--

85 4

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

Mathematical Logic I 12 Contents I Zorn

chap9.dvi

all.dvi

Maxwell


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

TOP URL 1

ohpmain.dvi

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4


( ) ) AGD 2) 7) 1

untitled

i

05Mar2001_tune.dvi


03実習2・松井.pptx

II 1 II 2012 II Gauss-Bonnet II


KENZOU

2000年度『数学展望 I』講義録

Mott散乱によるParity対称性の破れを検証

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Contents 1 Jeans (

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

A 99% MS-Free Presentation

Transcription:

Dec. 18 20, 2006 in DEX-SMI 2006 DC http://www.smapip.is.tohou.ac.jp/ jun/ in collaboration with M. Yasuda and K. Tanaa 1/24

2/24

scientific papers scientists Glucose 2 Lactate 2 ATP 2-Triose-P 2 P 2 NAD + i 2 NADH + 2 H+ 2 1,3-di-P-Glycerate 2 Pyruvate 2 ATP 2 ATP 3/24

2 1 3 4 5 : (e.g., 1 = 3, 3 = 2, 5 = 1) : P () = 1 N δ i, N i=1 2 1.0 0.5 0.8 0.4 10-1 P() 0.6 0.4 P() 0.3 0.2 P() 10-2 10-3 0.2 0.1 10-4 0.0 0 5 10 15 20 0.0 0 5 10 15 20 10-5 10 0 10 1 10 2 10 3 WWW etc. γ : P () γ 4/24

N: M: i : i a ij : r : r = 4M N i,j i j a ij [ N i,j ( i + j )a ij ] 2 2M N i,j (2 i + 2 j )a ij [ N i,j ( i + j )a ij ] 2 5/24

: or : bacbone : : : 6/24

BA (growing, dynamical) (nongrowing, dynamical) BA nongrowing, dynamical 7/24

Barabási-Albert (BA ) [Barabási and Albert, 1999] 1. m 0 2. m Π(i) i i i 3. m 1 m N = 200 = 2 4. 2 3 t N = t + m 0 t = 0 t = 1 t = 2 t = 3 t = 4 P() 10-1 10-2 10-3 10-4 10-5 10 0 10 1 10 2 10 3 N = 2000, = 4 averaged over 20 realizations 8/24

[Ohubo et al., 2005] 1. M N = 2M/N 2. φ(β) {β i } 3. l ij 4. m β = 0.10 β = 0.50 β = 0.15 β = 0.81 β = 0.72 β = 0.34 β = 0.45 m j β = 0.20 β = 0.62 i Π m = ( m + 1) β m j ( j + 1) β j β = 0.15 β = 0.81 β = 0.10 β = 0.72 β = 0.34 m m m j 5. l ij l im β = 0.62 6. 3,4,5 β = 0.50 β = 0.45 i β = 0.20 9/24

: φ(β) = δ(β 1) 10 0 10-1 P() 10-2 10-3 10-4 10-5 10 0 10 1 10 2 10 3 : φ(β) = 1, (0 β 1) P() 10 0 10-1 10-2 10-3 10-4 10-5 P() ~ -2.05 10 0 10 1 10 2 10 3 - (fat-tailed behavior) 10/24

f (β, t) : β [β, β + dβ] f (β, t) t Z(t) = ( + 1)β = f (β, t) + β Z(t) Z(t) f 1(β, t) dβ ( + 1) β f (β, t) N f (β, t) + ( + 1) N f +1(β, t) +1 Pref Rand Pref Rand -1 1 2 3 4 11/24

BA 12/24

1 3... 2 5 4 7 6 1 2 3 4 5 6 7... 1 2 3 4 5 6 7 13/24

...... N M ρ = M/N : E(n i ) = ln(n i!) High-energy Low-energy : p ni = e β ie(n i ) = (n i!) β i {β i } : φ(β) : W nl n l +1 (n l + 1) β l... 1 2 3 N-2 N-1 N 14/24

1 Z 1 = n 1 =0 n N =0 p n1 n 1! pn N n N! δ ( N ) n i, M i=1 = (n 1!) β1 1... (n N!) β N 1 1 2πi n 1 =0 n N =0 dz z P N i=1 n i M 1 (configuration) 1 f (β 1) = 1 Z 1 n 1 =0 n N =0 ( N ) δ(n 1, )(n 1!) β1 1... (n N!) β N 1 δ n i, M i=1 = (!) β 1 1 Z 2 Z 1 1 P (, β 1 ) = f (β 1) {β 2,...,β N } = (!)β 1 1 Z2 Z 1 {β 2,...,β N } P () = dβ φ(β)p (, β) = dβ φ(β)(!) β 1 Z2 Z 1 {β 2,...,β N } 15/24

2 ln Z 1 {β2,...,β N } ln Z i {β2,...,β N } = lim m 0 ( Z m i {β2,...,β N } 1 ) m (i = 1, 2) z s d ρ = G(z s ) G(z s ) dz s ( G(z) = ) dβ φ(β) (n!) β 1 z n n=0 P () = (!) β 1 zs φ(β) n=0 (n!)β 1 zs n dβ 16/24

N = 1000 (N = 4000) averaged over 20 realizations 0.5 0.4 10 0 10-1 ρ = 2 ρ = 5 P() 0.3 0.2 P() 10-2 10-3 0.1 10-4 P() 0.0 0 5 10 15 20 φ(β) = δ(β), ρ ρ P () = e! 10 0 ρ = 1.0 ρ = 4.0 10-1 10-2 10-3 10-4 10-5 10 0 10 1 10 2 10 3 10-5 φ(β) = 1, (0 β 1), P () = 1 0 10 0 10 1 10 2 10 3 φ(β) = δ(β 1), P () = 1 { ( 1 + ρ exp ln 1 + 1 )} ρ (!) β 1 z s n=0 (n!)β 1 z n s dβ z s = 0.660 (ρ = 1) z s = 0.967 (ρ = 4) P () 2 (ln ) 2 (ρ 1) 17/24

growing (dynamical) nongrowing (static) nongrowing & dynamical 1 2 BA 18/24

19/24

20/24

Newman [Newman and Girvan, 2004] : modularity Q Q = [ M i=1 e i m ( ) ] 2 di 2m M: e i : i m: d i : i Q... 21/24

[Ohubo and Tanaa, 2006] : V nc 2 V = n e n: e: V 1 = 2, V 2 = 4.5, V 3 = 10 V 1 V 2 V 3 = V 1 + V 2 in contact σ 1 σ 2 σ 12 V 1 V 2 V 3 = V 1 + V 2 V... 22/24

arate club 27 19 30 24 26 28 32 25 10 27 19 30 24 26 28 32 25 10 23 16 15 21 34 33 31 29 9 3 14 8 4 13 23 16 15 21 34 33 31 29 9 3 14 8 4 13 20 2 1 5 11 20 2 1 5 11 18 22 12 7 6 18 22 12 7 6 17 17 arate club arate club 1 33 2 10 23/24

: : : etc. 24/24