(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

Similar documents
IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

Automatic Detection of Circular Objects by Ellipse Growing Mitsuo OKABE, Kenichi KANATANI, and Naoya OHTA 1. [4], [5], [18], [19] [14], [17] [28], [32

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /8/ (2003) Costeira Kanade (1998) AIC Vidal (2005) GPCA Taubin 3 2 EM Multi-stage Opt

IPSJ SIG Technical Report Vol.2009-CVIM-168 No /9/ Latest Algorithm for 3-D Reconstruction from Two Views Kento Yamada, 1 Yasu

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Vol.-CVIM-7 No.7 /3/8 NLPCA kernel PCA KPCA 4),) NLPCA KPCA NLPCA KPCA principle curve principle surface KPCA ) ),),6),8),),3) ) Jacobian KPCA PCA ) P

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

E = N M α= = [( pα I α x ) 2 ( α qα + y ) 2 ] α r α r α I α α p α = P X α + P 2 Y α + P 3 Z α + P 4, q α = P 2 X α + P 22 Y α + P 23 Z α + P 24 r α =

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

yoo_graduation_thesis.dvi

untitled

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

H1-H4*.ai

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

[1] SBS [2] SBS Random Forests[3] Random Forests ii

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

P361

xia2.dvi

Sobel Canny i

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

LED a) A New LED Array Acquisition Method Focusing on Time-Gradient and Space- Gradient Values for Road to Vehicle Visible Light Communication Syunsuk

main.dvi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

28 Horizontal angle correction using straight line detection in an equirectangular image

ver.1 / c /(13)

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

main.dvi

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5


A Graduation Thesis of College of Engineering, Chubu University Pose Estimation by Regression Analysis with Depth Information Yoshiki Agata

ばらつき抑制のための確率最適制御

dvi

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

4d_06.dvi

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

数学の基礎訓練I

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

5 1F2F 21 1F2F

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A


3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

23_02.dvi

,,.,.,,.,.,.,.,,.,..,,,, i

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii

本文6(599) (Page 601)

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)



JFE.dvi

03.Œk’ì

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2 CAD : CAD 7

Microsoft Word - toyoshima-deim2011.doc

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

inkiso.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

HAJIMENI_56803.pdf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

i


Wide Scanner TWAIN Source ユーザーズガイド

kokyuroku.dvi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

第10章 アイソパラメトリック要素

waseda2010a-jukaiki1-main.dvi

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

untitled

it-ken_open.key

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

untitled

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

‡Â‡È‡ª‡é

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

Transcription:

[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp E-mail kanatani@suri.cs.okayama-u.ac.jp Yasuyuki SUGAYA, Member (Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi-shi, 441-8580 Japan) and Kenichi KANATANI, Member (Graduate School of Natural Science and Technology, Okayama-shi, 700-8530 Japan). Vol. 92 No. 4 pp.301 306 2009 4 1(b) 1(c) Canny (4),(5) 1(c) 1(d) 1(d) 2 CG 3. Ax 2 +2Bxy+Cy 2 +2(Dx+Ey)f 0 +F f 2 0 =0 (1) f 0 (1) (x α, y α ), α = 1,..., N (1) α = 1,..., N Ax 2 α+2bx α y α +Cy 2 α+2(dx α +Ey α )f 0 +Ff 2 0 0 (2) A, B, C, D, E, F 3 A, B, C, D, E, F [II] 301

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, y 2 α, 2f 0 x α, 2f 0 y α, f 2 0 ) (5) 2 (b) CG (2) (u, ξ α ) 0, α = 1,..., N (6) a, b (a, b) F = 1, A + B = 1, A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u = 1 (1) ( 1) ( 1) u (x α, y α ) x α 302 Vol.92, No.4, 2009

(1) (conic) (1) (6) ( 2) 4. (6) u N (u, ξ α) 2 (least squares) 6 6 M LS M LS ξ α ξ α (7) (u, ξ α ) 2 = (u, ξ α ξ α u) = (u, M LS u) (8) u u M LS (8) (3) F = 1 A + B = 1 (8) (2),(9),(10),(11) 5. (1) 0 (8) α (u,ξ α )=Ax 2 α+2bx α y α +Cy 2 α+2(dx α +Ey α )f 0 +Ff 2 0 (9) 0 (x α, y α ) x, y 0 ( x α, ȳ α ) x α = x α + ɛ α, y α = ȳ α + η α (10) ɛ α, η α 0 σ 2 (9) ( x α, ȳ α ) (9) 0 (u, ξ α ) = 2(A x α + Bȳ α + Df 0 )ɛ α +2(B x α + Cȳ α + Ef 0 )η α + (11) (u, ξ α ) 0 4 ( (A x α +Bȳ α +Df 0 ) 2 +(B x α +Cȳ α +Ef 0 ) 2) σ 2 (12) ( 3) u 4σ 2 (u, V 0 [ξ α ]u) (13) 6 6 V 0 [ξ α ] x 2 α x α ȳ α 0 f 0 x α 0 0 x α ȳ α x 2 α + ȳ 2 α x α ȳ α f 0 ȳ α f 0 x α 0 V 0 [ξ α ] 0 x α ȳ α ȳα 2 0 f 0 ȳ α 0 f 0 x α f 0 ȳ α 0 f0 2 0 0 (14) 0 f 0 x α f 0 ȳ α 0 f0 2 0 0 0 0 0 0 0 (u, ξ α ) 0 4σ 2 (u, V 0 [ξ α ]u) (u, ξ α )/ 4(u, V 0 [ξ α ]u) 0 σ 2 J = 1 4 (u, ξ α ) 2 (u, V 0 [ξ α ]u) (15) ( 2) AC B 2 > 0 (7) ( 3) c c 2 [II] 303

(maximum likelihood estimation) V 0 [ξ α ] (14) ( x α, ȳ α ) (x α, y α ) (15) u u (15) (1) ( 4) (6) (15) Chojnacki (12) FNS 6. (15) ξ α N (u, ξ) = 0 u N ξ α ξ α (Euclidean distance) (Mahalanobis distance) ξ α ξ α ( 4) ξ α ξ α ξ α V [ξ α ] J = (ξ α ξ α, V [ξ α ] 5 (ξ α ξ α )) (16) ξ α ξ α ( ) 5 5 ( 5) (16) (u, ξ α ) = 0, α = 1,..., N (16) (15) V 0 [ξ α ] V [ξ α ] () (14) ξ α 7. Taubin (15) FNS (1) 4. Taubin (15) V 0 [ξ α ] N TB 1 N V 0 [ξ α ] (17) (15) J TB J TB = N 4 = N 4 (u, ξ α ) 2 (u, N TB u) = N 4 (u, M LS u) (u, N TB u) (u, ξ α ξ α u) (u, N TB u) (18) M LS (7) J TB (Rayleigh quotient) u ( 6) (generalized eigenvalue problem) M LS u = λn TB u (19) (10) (14) V 0 [ξ α ] 6 6 0 (17) N TB N TB ( 7) ξ α u, V 0 [ξ α ] ( ξ, u) = 0 4 ( 4) ξ α x α V 0 [ξ α ] 3 3 V 0 [x α ] ( 5) 5 0 (8) (1) ( 6) (19) N TB λ u ( 7) A 0 x (x, Ax) > 0 (8) 304 Vol.92, No.4, 2009

ξ α = ( V 0 [ξ α ] = z α f0 2 ( ), u = V 0 [z α ] 0 0 0 5 5 M LS Ñ TB M LS z α z α, z α z α z α, ) ( Ñ TB z 1 N v F ) (20) V 0 [z α ] (21) z α (22) (19) M LS v = λñ TBv, (v, z) + f 2 0 F = 0 (23) 1 (19) Ñ TB v 2 F Taubin 5 Taubin Taubin (13) Taubin 1990 (14) (16) 8. (1) u u û u û u ( 6) û V [û] = E[ u u ] (24) E[ ] KCR (KCR lower bound)) V [û] 4σ 2 M 5 (25) ( 8) σ 2 (a) u u O u^ u (b) 5 Taubin (11) 6 u û u u ( 8) A x (x, Ax) 0 (8) [II] 305

(a) (b) 7 (9) M M ξ α ξ α (u, V 0 [ ξ α ]u) (26) ξ α V 0 [ ξ α ] ξ α V 0 [ξ α ] (x α, y α ) u (25) O(σ 4 ) KCR 7 (9) 9. Taubin 2 (1),, [I], vol.92, no.3, pp.229 233, March 2009. (2) K. Kanatani, Geometric Computation for Machine Vision, Oxford University Press, Oxford, U.K. 1993. (3),,,, 2004. (4),,,, (D-II), vol.j85-d-ii, no.12, pp.1823 1831, Dec. 2002. (5),, 14 (SSII08), IN1-14, pp.1 6 June 2008. (6) A. Fitzgibbon, M. Pilu and P. B. Fisher, Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell., vol.21, no.5, pp.476 480, May 1999. (7),,, 1998. (8),,, 2005. (9) Y. Kanazawa and K. Kanatani, Optimal conic fitting and reliability evaluation, IEICE Trans. Inf. & Syst., vol.e79-d, no.9, pp.1323 1328, Sept. 1996. (10) K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, Elsevier Science, Amsterdam, The Netherlands, 1996; Dover, New York, 2005. (11),,,,, no.2006-cvim-154-36, pp.339 346, May 2006. (12) W. Chojnacki, M.J. Brooks, A. van den Hengel and D. Gawley, On the fitting of surfaces to data with covariances, IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.11, pp.1294 1303, Nov. 2000. (13) G. Taubin, Estimation of planar curves, surfaces and, non-planar space curves defined by implicit equations with applications to edge and range image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol.13, no.11, pp.1115 1138, Nov. 1991. (14) N. Tagawa, T. Toriu, and T. Endoh, Un-biased linear algorithm for recovering three-dimensional motion from optical flow, IEICE Trans. Inf. & Syst., vol.e76-d, no.10, pp.1263 1275, Oct. 1993. (15) N. Tagawa, T. Toriu, and T. Endoh, Estimation of 3-D motion from optical flow with unbiased objective function, IEICE Trans. Inf. & Syst., vol.e77-d, no.10, pp.1148 1161, Oct. 1994. (16) N. Tagawa, T. Toriu, and T. Endoh, 3-D motion estimation from optical flow with low computational cost and small variance, IEICE Trans. Inf. & Syst., vol.e79-d, no.3, pp.230 241, March 1996. 20 10 29 20 11 17 8 13 47 54 IEEE 306 Vol.92, No.4, 2009