Similar documents
1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u(

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

ct_root.dvi

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2

2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2

3/4/8:9 { } { } β β β α β α β β

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

°ÌÁê¿ô³ØII


tnbp59-21_Web:P2/ky132379509610002944

inkiso.dvi


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

第1章 微分方程式と近似解法

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

,398 4% 017,

Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885

Part () () Γ Part ,

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

Page


gr09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) ( )

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2 F K F F K 717 cf (1) 8 8 (public goods) 9 (nonrivalrous) 10 (nonexcludable) 11 (goods) (2) 12

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Ł\”ƒ-2005

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

第90回日本感染症学会学術講演会抄録(I)

untitled

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


Untitled

日本内科学会雑誌第102巻第4号

現代物理化学 2-1(9)16.ppt

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

8 OR (a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)


2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

熊本県数学問題正解

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

note1.dvi

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

( )

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

TOP URL 1

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

29

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

現代物理化学 1-1(4)16.ppt


70 : 20 : A B (20 ) (30 ) 50 1

< E A E D E E C837C815B83672E706466>

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

untitled

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

01.Œk’ì/“²fi¡*

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

78 TPP TPP 5 TPP CVM Contingent Valuation Method 6 TPP TPP 2 TPP 2 1 TPP TPP 4 06 P4 Pacific 4 EPA TPP 2 2

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

K E N Z OU

untitled

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

DVIOUT-HYOU

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

入試の軌跡

プログラム

B

solutionJIS.dvi

st.dvi

本文/目次(裏白)

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

untitled

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

Transcription:

(1) (2) 27 7 15 (1) (2), E-mail: bessho@econ.keio.ac.jp

1 2 1.1......................................... 2 1.2............................... 2 1.3............................... 3 1.4............................ 4 2 9 2.1...................................... 9 2.2................................ 15 3 18 3.1.......................................... 18 3.2.......................................... 23 4 27 4.1.................................. 27 4.2....................................... 30 5 33 5.1................................ 33 5.2 First-best..................... 34 5.3 Second-best................... 40 6 44 6.1 First-best......................................... 45 6.2 Second-best....................................... 48 1

7 54 7.1................................. 54 7.2................................ 55 7.3......................................... 62 8 68 8.1..................................... 68 8.2......................................... 74 2

1 1.1 2005 cost benefit B C NB NB = B C (1.1) NB 0 NB < 0 with/without 1.2 3

1.3 2 1 market failure 2 1 4

2 1 1 1 1 1 1 1.4 [1] [2] [3] [4] [5] [6] [7] Net Present Value 5

[8] [9] 2004 2 2 40 8 1 6 4 6

1 1 1 12 1 200 7

CEA: Cost Effective Analysis t B C s (1 + s) t s T P V (B) = T t=0 B T t (1 + s) t, P V (C) = C t (1 + s) t t=0 NP V = P V (B) P V (C) NPV IRR: Internal Rate of Return 8

9

2 2.1 Vilfredo Pareto, 1848-1923 Pareto efficient allocation Pareto improving Pareto dominant (1) 3 (2) (1) (2) 10

2.1.1 MRS: Marginal Rate of Substitution A B 2 X Y 2 X 1 Y (3) X Y A B X Y A B A 1 B 2 A B X 1 B A Y 1 A 1 X 1 Y 1 A B 2 X 1/2 Y 1 B 2 2 2.1.2 X Y (3) X Y 11

X Y X 1 Y MRT: Marginal Rate of Transformation 2.1.3 2 X 2.1: Y 2.1 e e E E e 12

2.1 4 1 4 2 X 1 Y 4 1 X 1 Y 1 Y 4 X 4 2 2.1 (4) E X 1 Y MRS F MRT MRS F F O e f f e f 2 e F G 2 G 2 E e 2.1.4 2 2 2.1 1 2 2.2 2.2 c abc (4) 13

2.2: c d d A B compensation a b c d (5) 2.1.5 2 2.2 a, b,d (5) B A B 14

3 social welfare function Bergson-Samuelson (6) A B 2 Bergson-Samuelson W = W (U A, U B ) (2.1) 2.2 5 (6) 15

W/ U i > 0 2.2 W (U A, U B ) = W (U B, U A ) 2.2 2 45 Bergson-Samuelson 2.2 2 W = U A + U B W = min(u A, U B ) 2.2 16

price taker 17

1 3 18

3 market failure 3.1 2 3.1.1 2 A B 2 x A, x B 2 19

G 2 M A, M B p 1 A B g A, g B G = g A + g B A u A = u A (x A, G), x A + pg A = M A (3.1) B u B = u B (x B, G), x B + pg B = M B (3.2) u A = u A (x A, g A + g B ) = u A (M A pg A, g A + g B ) (3.3) u B = u B (x B, g A + g B ) = u B (M B pg B, g A + g B ) (3.4) B u A max u A, s.t. u B u (3.5) L = u A (M A pg A, g A + g B ) + λ (u u B (M B pg B, g A + g B )) (3.6) FONC: First Order Necessary Conditions L = u A ( p) + u A g A x A G λ u B G = 0 (3.7) L = u ( A ub λ ( p) + u ) B = 0 (3.8) g B x A x B G L λ = u u B(M B pg B, g A + g B ) = 0 (3.9) (3.7) λ = 1 u B / G ( p u A + u A x A G ) (3.10) 20

(3.8) u A x A 1 u B / G ( p u A + u A x A G u A / G ( 1 = p u ) ( A/ x A u A / G + 1 p u ) B/ x B u B / G + 1 MRS A = u A/ G u A / x A ( 1 = p ) ( + 1 p ) + 1 MRS A MRS B ) ( ub ( p) + u ) B = 0 (3.11) x B G (3.12) (3.13) (3.14) p = MRS A + MRS B (3.15) 1 A B 2 3.1.2 A B A B A B 2 2 A B Nash A B g B A max u A = u A (x A, g A + g B ) s.t. x A + pg A = M A (3.16) 21

FONC u A x A ( p) + u A G = 0 (3.17) u A / G u A / x A = MRS A = p (3.18) B MRS B = p FONC MRS A + MRS B = 2p > p (3.19) G u A / G G 3.1.3 (1) A B 2MRS A = MRS B 1 A 1 3 p B 2 3p A B MRS A = 1 3 p MRS B = 2 3 p A B (1) 22

1 A B C A C 3.1 A B C 3.1: p 3 (1/3)p 23

A a B b A 3.2 externality 3.2 3.2.1 4 Coase 24

3.2: 25

2 26

3.2.2 1 p 1 27

4 4.1 p u 2 E(p 1, p 2, u) 1 p 1 p 0 1 p1 1 M 0 M 1 u 0 1 u 1 E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 1 ) (4.1) p 1 u u 0 = u 1 EV: Equivalent Variation CV: Compensated Variation 28

EV = E(p 0 1, p 2, u 1 ) E(p 0 1, p 2, u 0 ) (4.2) CV = E(p 1 1, p 2, u 1 ) E(p 1 1, p 2, u 0 ) (4.3) WTA: Willingness to Accept WTP: Willingness to Pay 1 M 1 = E(p 1 1, p 2, u 1 ) EV = E(p 0 1, p 2, u 1 ) E(p 0 1, p 2, u 0 ) = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 E(p 0 1, p 2, u 0 ) = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 M 0 (4.4) 2 p 2 u 1 p 1 E E EV = E(p 0 1, p 2, u 1 ) E(p 1 1, p 2, u 1 ) + M 1 M 0 = p 0 1 p 1 1 p 1 E(p 1, p 2, u 1 )dp 1 + M 1 M 0 (4.5) Shephard s lemma x c EV = = p 0 1 p 1 1 p 0 1 p 1 1 p 1 E(p 1, p 2, u 1 )dp 1 + M 1 M 0 x c 1(p 1, p 2, u 1 )dp 1 + M 1 M 0 (4.6) 2 29

M 0 = E(p 0 1, p 2, u 0 ) CV = E(p 1 1, p 2, u 1 ) E(p 1 1, p 2, u 0 ) = E(p 1 1, p 2, u 1 ) M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) = M 1 M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) (4.7) 2 p 2 u 0 p 1 E E CV = M 1 M 0 + E(p 0 1, p 2, u 0 ) E(p 1 1, p 2, u 0 ) = M 1 M 0 + p 0 1 p 1 1 p 0 1 p 1 E(p 1, p 2, u 0 )dp 1 (4.8) CV = M 1 M 0 + E(p 1, p 2, u 0 )dp 1 p 1 p 1 1 p 0 1 = M 1 M 0 + x c 1(p 1, p 2, u 0 )dp 1 (4.9) p 1 1 2 p 0 1 > p1 1 1 4.1 1 p 0 1 p1 1 1 4.1 30

4.1: 4.2 31

1 2 2 1 1 p 1 x 1 2 v(x 1 ) 1 2 (x 1, x 2 ) = (0, 0) 1 x 1 2 v(x 1 ) v(0) = 0 2 quasi-linear f u(x 1, x 2 ) = f(v(x 1 ) + x 2 ) (4.10) (1) u(x 1, x 2 ) = v(x 1 ) + x 2 (4.11) MRS = u/ x 1 u/ x 2 = v (x 1 ) (4.12) 2 1 v (x 1 ) = p (4.13) 1 1 1 1 x 1 x 1 2 v(x 1 ) v (x 1 ) x 1 x 1 2 p x 1 v (x 1 ) x 1 p x 1 (4.14) 1 x 1 = 0 1 x 1 x1 (v (x 1 ) p)dx 1 0 (1) 2007 6 (4.15) 32

v (x 1 ) v(x 1 ) v(0) = 0 x1 0 (v (x 1 ) p)dx 1 = v(x 1 ) px 1 (4.16) FONC v (x 1 ) = p 1 2 1 consumer surplus 4.2: 4.2 33

5 5.1 (1) 2 CVM (1) 1996 A-201 http://www3.grips.ac.jp/ kanemoto/bennkk.pdf 1999 4 http://www3.grips.ac.jp/ kanemoto/bc/sec4.pdf 34

5.2 First-best 5.2.1 5.2.2 3 1 1 2 1 2 2 3 3 p 3 = 1 1 2 3 u(x 1, x 2, x 3 ) = v(x 1, x 2 ) + x 3 (5.1) 35

M M = p 1 x 1 + p 2 x 2 + x 3 (5.2) v (x 1, x 2 ) = p 1 x 1 v (x 1, x 2 ) = p 2 x 2 (5.3) (5.4) x 1 = x 1(p 1, p 2 ) x 2 = x 2(p 1, p 2 ) (5.5) (5.6) 3 1 2 1 2 1 2 1 C 1 (x 1 ) = p 1 x 1 1 2 C 2 (x 2 ) = c(x 2 ) (2) 1 2 3 first-best (3) first-best p 1 = c 1 p 2 = c 2(x 2 ) (5.7) (5.8) 1 c 1 c 1 (2) 3 1 (3) First-best 36

2 x 2 = x 2 (p 1, p 2 ) p 2 = c 2 (x 2) p 2 = c 2(x 2(p 1, p 2 )) (5.9) p 1 p 2 implicit p 2 explicit p 2 = p 2(p 1 ) (5.10) 1 p 1 = c 1 p 2 = p 2(c 1 ) (5.11) 1 2 x 1 = x 1(c 1, p 2(c 1 )) x 2 = x 2(c 1, p 2(c 1 )) (5.12) (5.13) 1 2 c 1 1 2 (5.10) x 1 = x 1(p 1, p 2(p 1 )) (5.14) x 2 = x 2((p 2) 1 (p 2 ), p 2 ) (5.15) (4) 1 2 c 1 c 1 1 2 u(x 1, x 2, x 3 ) = v(x 1, x 2 ) + x 3 = v(x 1, x 2 ) + M p 1 x 1 p 2 x 2 = v(x 1(c 1, p 2(c 1 )), x 2(c 1, p 2(c 1 ))) + M c 1 x 1(c 1, p 2(c 1 )) p 2(c 1 )x 2(c 1, p 2(c 1 )) (5.16) (4) (p 2) 1 p 2 37

c 1 c 1 du = v dx 1 dc 1 x 1 + v dx2 dc 1 x 2 dc ( 1 x 1(c 1, p dx 1 2(c 1 )) + c 1 dc 1 ) ( ) dp 2 x dc 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 1 dc 1 (5.17) 1 v/ x 1 = p 1 = c 1 v/ x 2 = p 2 (c 1) du dc 1 = c 1 dx 1 + p dc 2(c 1 ) dx 2 1 dc ( 1 x 1(c 1, p dx 1 2(c 1 )) + c 1 dc 1 ) ( ) dp 2 x dc 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 1 dc 1 = x 1(c 1, p 2(c 1 )) dp 2 dc 1 x 2(c 1, p 2(c 1 )) (5.18) 1 1 (5) 2 π 2 = p 2 x 2 C 2 (x 2 ) (5.19) c 1 1 2 π 2 = p 2(c 1 )x 2(c 1, p 2(c 1 )) c 2 (x 2(c 1, p 2(c 1 ))) (5.20) c 1 c 1 dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 dc 1 c 2(x 2 ) dx 2 dc 1 (5.21) p 2 = c 2 (x 2) dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) + p 2(c 1 ) dx 2 dc 1 p 2 dx 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1 )) (5.22) S ds = du + dπ 2 = x dc 1 dc 1 dc 1(c 1, p 2(c 1 )) (5.23) 1 1 1 2 2 (5) 38

c 1 c 1 1 5.2.3 First-best 3 1 2 1 p 0 1 p1 1 5.1: First-best 5.1 0 1 1 2 39

1 p 0 1 2 p0 2 x 1 (p 1, p 0 2 ), x 2 (p0 1, p 2) 1 1 p 1 1 1 1 2 2 2 5.1 2 2 2 1 5.1 1 2 1 2 1 p 1 1 2 p1 2 x 1 (p 1, p 1 2 ), x 2 (p1 1, p 2) 1 2 p 2 2 p 2 1 p 1 2 1 1 x 1 (p 1, p 2 (p 1)) 5.1 p 1 = p 0 1 x 1 (p0 1, p0 2 ) p 1 = p 1 1 x 1 (p1 1, p1 2 ) 2 2 p 2 = p 0 2 x 2 (p0 1, p0 2 ) p 2 = p 1 2 x 2 (p1 1, p1 2 ) 2 c (x 2 ) 5.1 1 2 2 1 1 2 40

5.3 Second-best 1 2 1 2 first-best 1 2 2 second-best 5.3.1 First-best 2 2 wedge t p 2 p 2 t c 2(x 2 ) = p 2 + t (5.24) t t > 0 t > 0 t first-best 2 (5.10) p 2 = p 2 (p 1, t) du dc 1 = x 1(c 1, p 2(c 1, t)) dp 2 dc 1 x 2(c 1, p 2(c 1, t)) (5.25) dπ 2 dc 1 = dp 2 dc 1 x 2(c 1, p 2(c 1, t)) (5.26) First-best 2 (6) (6) 41

(7) T = tx 2 (8) c 1 dt dc 1 = t dx 2 dc 1 (5.27) ds = du + dπ 2 + dt = x dc 1 dc 1 dc 1 dc 1(c 1, p 2(c 1 )) t dx 2 (5.28) 1 dc 1 First-best 2 t dx 2 /dc 1 2 c 1 dx 2 /dc 1 > 0 t > 0 c 1 1 1 t(dx 2 /dc 1) (9) 2 2 t dx 2 /dc 1 dx 2 /dc 1 < 0 5.1 5.1: Second-best t < 0 t = 0 t > 0 First best dx 2 dx 2 > 0 < 0 (7) 1 2 (8) t > 0 tx 2 (9) c 1 42

5.3.2 5.2: Second-best First-best 1 2 5.2 first-best first-best c 2 (x 2) t > 0 p 2 t p 2 p 2 + t first-best t c 2 (x 2) first-best first-best 2 2 43

2 2 1 2 2 first-best 44

6 (1) sunk cost 1 shadow price first-best secondbest first-best second-best Second-best (1) 112 124 45

6.1 First-best 6.1.1 first-best = 6.1: 6.1 x 1 (p 1, g = q 0 ) x 1 (p 1, g = q 1 ) 46

6.1.2 6.2: 6.2 6.1.3 6.3 47

6.3: x 1 (p 1 ; g = q 0 ) q 0 q 1 x 1 (p 1 ; g = q 1 ) p 0 1 p1 1 p 1 1 (q 1 q 0 ) 6.3 x 1 (p 1 ; g = q 0 ) 6.3 A B 6.3 A B C C 48

C 6.3 6.3 q 1 q 0 1 shadow price 6.2 Second-best wedge 2 6.2.1 6.4 / S S + t g = q 0 x 1 (p 1, g = q 0 ) S + t p 0 1 + t p0 1 g = q 1 x 1 (p 1, g = q 0 ) 49

6.4: x 1 (p 1, g = q 1 ) x 1 (p 1, g = q 1 ) S + t p 1 1 + t p1 1 (p 1 1 + t) (q 1 q 0 ) (2) A B 6.4 A B C S + t S A A C (2) 50

S + t S C D (p 1 1 + t) (q 1 q 0 ) C 6.4 6.4 q 1 q 0 p 0 1 p1 1 p 1 p 1 + t D S q 1 q 0 = D + S 6.4 p p D = (p 1 + t) D + S + p S 1 D + S (6.1) Harberger s weighted average shadow price formula 6.2.2 2 51

(3) 6.5: 6.5 p m L (3) 52

A 2 1 2 2 B p m p m 6.5 p m C 6.5 p c p d p c p d p c p d D 6.5 p m p r C p m p r p m p r 53

p r E (1/2)p m D p r p m = 0 p m p r D (1/2)p m p m E B 54

7 1 q 2 r 3 i (1) (2) 7.1 2 7.1 1 1 + r (1) (2) 55

7.1: 1 + q 1 i 7.2 56

7.2.1 7.2: 7.2 D S S + t / E 0 I E 1 E 1 i 57

q D S I = D + S 7.2 i D I + q S I (7.1) D S 8% (3) 8% 1 2 3 4 5 8% (3) 2004 10 302 AAA 1947 1999 6.86% 38% 0.0686/(1 0.38) = 0.1106 11.06% 3% 8% 58

7.2.2 2% (4) 1 2 3 (4) 2004 10 304 10 1953 1999 6.67% 30% 0.0667 (1 0.30) = 0.0474 4.74% 3% 2% 59

7.2.3 7.2 = = 3 7.2.4 1 1 1 60

depreciate capital depreciation r δ (5) 1 + q t C t K t s 0 1 1 C 1 = r(1 s), K 1 = (1 d) + sr (7.2) r C 2 = r(1 s)(1 d + sr), K 2 = (1 d + sr)(1 d) + sr(1 d + sr) = (1 d + sr) 2 (7.3) C 3 = r(1 s)(1 d + sr) 2, K 3 = (1 d + sr) 3 (7.4) θ C 1, C 2, C 3,... θ = = = r(1 s) 1 + q r(1 s) 1 + q r(1 s) 1 + q r(1 s)(1 d + sr) r(1 s)(1 d + sr)2 + (1 + q) 2 + (1 + q) 3 + [ 1 + 1 d + sr ] (1 d + sr)2 + 1 + q (1 + q) 2 + [ 1 + 1 d + sr ] 1 1 + q θ = r(1 s) q + d sr (7.5) s = 0 d = 0 r θ = r q (7.6) (5) Lyon, Randolph M. 1990. Federal discount rate policy, the shadow price of capital, and challenges for reforms. Journal of Environmental Economics and Management 18(2-2), pp.s29 S50. Appendix 1 61

1 s d 1.3% 2.7% 7.2.5 10% 2 A 1 2 36 37 PV A 100 100 100 100 100 1,000 B 151 100 100 0 0 1,014 7.1: 2 100 B 151 2 36 100 10% A 1,000 B 1,014 B A B 1 51 37 100 A B 62

F. Ramsey 7.2.6 7% 4% 7.3 7.3.1 k T (k) T (k) = t=0 B t C t k (1 + r) t = B t C t + T (k) (7.7) (1 + r) t t=0 T (k) 5 63

k (1) (2) 64

7.3.2 B/C = t=0 B t/(1 + r) t t=0 C t/(1 + r) t (7.8) 1 net B/C = t=0 (B t C t )/(1 + r) t t=0 t=0 C t/(1 + r) t = B t/(1 + r) t t=0 C t/(1 + r) t 1 (7.9) IRR: Internal Rate of Return π t=0 B t (1 + π) t t=0 C t (1 + π) t = 0 (7.10) 65

t B t C t t (7.10) (6) 1.5 30 1500 2850 7.2 7.2: 0 1 2 30 15,000 1,500 1,500 1,500 0 2,850 2,850 2,850 6% NPV: Net Present Value NPV = 15, 000 + 30 t=1 2, 850 1, 500 (1 + 0.06) t 3, 583 (7.11) 7.3 8.1395 1 8.1395% (6) 2007 8 2007 8.1 66

7.3: B/C 4 40,938 49,282 8,344 1.204 6 35,647 39,230 3,583 1.100 8 31,887 32,085 198 1.006 8.1395 31,667 31,667 0 1.000 10 29,140 26,867-2,274 0.922 7.3.3 B/C B/C 7.4 4 I 0 NP V 7.4: I 0 NPV B/C A 1,000 100 1.10 B 500 60 1.12 C 400 80 1.20 D 100 15 1.15 B/C 1 1,000 I 0 1, 000 67

C 2 D 2 1 B C D A (7) 7.5 2 A 75 3,000 B 15 2,400 2 7.5: NPV A 3,000 75 B 2,400 15 A B 5 15 75 4 5 8% B 5 = 2, 400 + 2, 400 2, 400 2, 400 2, 400 + + + 3, 494 1.0815 1.0830 1.0845 1.0860 (8) (7) 2004 pp.171-172 (8) 68

8 (1) 8.1 8.1.1 1 1km 0.001 0.1% 20m 1km 0.004 0.4% 20m 0.995 99.5% 1km 30 20m 1km 6 600 1km 5 20m 1km 1 1km 5 600 8.1 (1) 8 9 69

8.1: 1km 20m-1km 1 0.001 0.004 0.995 10 5,060 1,060 60 69 30,000 6,000 0 54 5.06 0.001 + 1.06 0.004 + 0.06 0.995 = 0.069 69 54 8.1 1000 600 1000 600 400 150 550 8.1.2 (2) Y U(Y ) du/dy > 0 Y α 1, α 2,..., α K K π 1, π 2,..., π K (2) 2010 8 70

K E[U(Y )] = π 1 U(α 1 ) + π 2 U(α 2 ) + + π K U(α K ) = π i U(α i ) (8.1) Y U(Y ) E[U(Y )] Y Y i=1 E[U(Y )] = U(Y ) (8.2) Y certainty equivalence U risk averse U < 0 Y E[Y ] Y < E[Y ] risk premium = E[Y ] Y (8.3) 8.1: K = 2 Y β, γ β < γ β π γ 1 π 71

β, γ E[Y ] = πβ + (1 π)γ β γ 1 π : π E[Y ] U(E[Y ]) U(β), U(γ) 2 1 π : π E[U(Y )] = πu(β) + (1 π)u(γ) E[U(Y )] Y Y < E[Y ] 8.1.3 certainty equivalence 2 (3) q 1 q 2 = 1 q 1 G G = G G = 0 X r 1 (> q 1 ) r 2 (< q 2 ) (3) 2002 5(3), 2-11 Freeman III, A.M. 1986. Uncertainty and option value in environmental policy. in E. Miles, R. Pealy and R. Stokes eds. Natural Resources Economics and Policy Applications Essay in honor of James A. Crutchfield, Seattle and London, University of Washington Press, pp.251-271. 72

i = D p 1 p 2 = 1 p 1 i = N U D (Y D, P D, G) U N (Y N, P N ) Y P U D (Y D, P D, G ) > U D (Y D, P D, 0) CS i CS D : U D (Y D CS D, P D, G ) = U D (Y D, P D, 0) (8.4) CS N : CS N = 0 (8.5) U N (Y N, P N ) p 2 U D (Y D, P D, G ) p 1 q 1 U D (Y D, P D, 0) p 1 q 2 EU SQ EU SQ = p 1 q 1 U D (Y D, P D, G ) + p 1 q 2 U D (Y D, P D, 0) + p 2 U N (Y N, P N ) (8.6) X r 1 > q 1 X EU OP EU OP = p 1 r 1 U D (Y D X, P D, G ) + p 1 r 2 U D (Y D X, P D, 0) + p 2 U N (Y N X, P N ) (8.7) p 1, q 1, r 1 X X option price X EU OP EU OP = EU SQ X 73

ECS CS N = 0 CS i q 1 r 1 ECS = p 1 (r 1 q 1 )CS D + p 2 0 CS N = p 1 (r 1 q 1 )CS D (8.8) option value Option Value = Option Price ECS (8.9) (4) p 2 = 0 X r 2 = 0 EU SQ = q 1 U D (Y D, P D, G ) + q 2 U D (Y D, P D, 0) (8.10) EU OP = U D (Y D X, P D, G ) (8.11) EU OP = EU SQ X 8.1.4 U D (Y D CS D, P D, G ) = U D (Y D, P D, 0) (8.12) (4) 2002 74

CS D G 1 2 individual risk, idiosyncratic risk collective 8.2 75

8.2.1 1 2 3 4 76

8.2.2 2 DVD 1 2 3 77