( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

Similar documents
2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

非可換Lubin-Tate理論の一般化に向けて

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

日本数学会・2011年度年会(早稲田大学)・総合講演

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

1

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

wiles05.dvi

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q


compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c


Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

On a branched Zp-cover of Q-homology 3-spheres

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Broadhurst-Kreimer Brown ( D3) 1 Broadhurst-Kreimer Zagier Gangl- -Zagi

第5章 偏微分方程式の境界値問題

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

meiji_resume_1.PDF

1 Tokyo Daily Rainfall (mm) Days (mm)

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

コホモロジー的AGT対応とK群類似


(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

untitled


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

数学概論I

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

note1.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

nsg02-13/ky045059301600033210

日本内科学会雑誌第102巻第4号

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

( ) Loewner SLE 13 February

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

四変数基本対称式の解放

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu


Twist knot orbifold Chern-Simons

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

等質空間の幾何学入門

2000年度『数学展望 I』講義録

入試の軌跡

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

16 B

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji


1).1-5) - 9 -

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

本文/目次(裏白)

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

( ) (, ) ( )

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

main.dvi

Kullback-Leibler

Ł\”ƒ-2005

2010 ( )

第90回日本感染症学会学術講演会抄録(I)

II 1 II 2012 II Gauss-Bonnet II

prime number theorem

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

: , 2.0, 3.0, 2.0, (%) ( 2.

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

newmain.dvi

Transcription:

2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s = 1 Tate-Shafarevich ),, p Galois Bloch- ([BK90]),. L Galois ( )., Dirichlet,, p Galois ([Ka04]). 90 ([Ka93a], [FK06]), p Galois, p Galois ( ). p Galois.,, Q(ζ n ) (n 1) Euler ), Galois., p Galois Langlands, p Galois L L, p Galois L. L, L., L Galois., l Q l Galois G Ql p, Galois ( :16K17556) 2010 Mathematics Subject Classification: 11F80 (primary), 11F85, 11S25 (secondary), p Langlands 840-8502 1 e-mail: nkentaro@cc.saga-u.ac.jp

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q p ) p Langlands )., GL 2 (Q p ) p Langlands, G Qp 2 p ( ), ( ) ([Na17b]). p Langlands?. 2., 2.1., 2.1.1.? p Galois V,,. Q, L (V ), (Hodge p ). Q l, (L, ) (L, ), l = p de Rham )D dr (V ), Bloch-Kato exponential., V (V ) 1 z geom (V ) (V ) (Q ), ε geom l (V ) (V ) (Q l ) (, Q V, L Beilinson ). p Galois p Galois

., Z p [[T 1,..., T d ]] G Q G Ql T., X := Spec(Z p [[T 1,..., T d ]][1/p]) x X, T x V x p Galois (, T x X p Galois V x Spf(Z p [[T 1,..., T d ]]) ). T, T Galois, T 1 Z p [[T 1,..., T d ]]. (T ) z(t ) (T ) (Q ), ε l (T ) (T ) (Q l ), x X V x, z(t ), ε l (T ) x z(v x ), ε l (V x ) z geom (V x ) = z(v x ) (V x ) (Q ), ε geom l (V x ) = ε l (V x ) (V x ) (Q l ). 1, z(t ), ε l (T ),. 2.1.2. Bloch- d = 0, Z p Galois T. X = Spec(Q p ) = {x} 1, V x = T [1/p]., V x, Q p z geom (V x ), ε geom l (V x ) (V x ),, T Z p (T ) (V x )., Q V x L p Bloch- ([BK90]), Q l (l = p Bloch- exponential ) p Perrin-Riou ([Pe95]).,,.., Q 1 p Galois Γ := Gal(Q(ζ p )/Q), Λ := Z p [[Γ]]. Z p [[[T ]] Zp Z p [(Z p /2p) ],., V p Galois, T Galois V Z p. Λ Galois Dfm(T ) := T Zp Λ Galois g x y T Zp Λ g(x y) := gx [ḡ] 1 y (, ḡ Γ g Q(ζ p ) [ḡ] Λ ḡ ). Dfm(T ) T. Shapiro, Q p Dfm(T ) Λ HIw(Q i p, T ) := H i (Q p, Dfm(T )) lim H i (Q p (ζ p n), T ) cor

(, Dfm( ) Iw. ε Iw (T ) := ε(dfm(t )), Iw (T ) := (Dfm(T ))).,., Dfm(T ) T, T., µ p n := {x Q x pn = 1}, G Q Z p Z p (1) := lim µ p n., Kummer 1 p n n ζ p n µ p n (1 ζ p n) Z[ζ p n, 1/p] c n H 1 (Z[1/p, ζ p n], Z p (1)) H 1 (Q(ζ p n), Z p (1)). 1 p n {ζ p n} n 1 ζ p p n+1, = ζ p n c := (c n ) n 1 H 1 Iw(Z[1/p], Z p (1)) H 1 Iw(Q, Z p (1)). ([Ka93a]), Dfm(Z p (1)) z Iw (Z p (1)) Iw (Z p (1)) (, Iw (Z p (1)) Λ Frac(Λ), Iw (Z p (1)) Mazur-Wiles, Rubin Q ). 2, ([Ka04]), ( ). f(τ) := q + n 2 a n (f)q n (τ C, Im(τ) > 0, q := exp(2πiτ)) N k 2 Hecke. Q C, Q Q p a n (f) Q p, Q p {a n (f)} n 2 Q p F f., Eichler-, Deligne, G Q F f 2 V f, L L(V f, s) f L L(f, s) := n 1 a n (f) n s (Re(s) >> 0). V f, p {c n,f H 1 (Z[1/Np, ζ p n], V f ) n 1} c f H 1 Iw(Z[1/Np], V f )., Dfm(Z p (1)) z Iw (V f ) Iw (V f ) Λ Frac(Λ) (Dfm(V f ) ) ([Ka04], [Na17b])., Frac(Λ), Q,

, Iw (V f ). z Iw (V f ) ([Na17b]). p Galois., p, p, F( ), Galois T F.,, Dfm(T F ) ( [Oc06] )., Mazur Galois, F p Galois T, p T p Galois Z p [[T 1,..., T d ]]/I (I ) R univ ) T univ (T ). p Galois, T univ z(t univ ) (T univ ) (Q ), ε l (T univ ) (T univ ) (Q l ). Galois ( Galois Galois ) R = T ( (Hecke T ) ), R univ T univ., R = T T univ,. 2.1.3.?, p Galois V z geom (V ) ε geom l (V ) (L ), p Galois., (2.1.1 ) Z p [[T 1,..., T d ]] Galois T. X := Spec(Z p [[T 1,..., T d ]][1/p])., X geom := {x X V x } X geom X, x X geom z geom (V x ) ε geom l (V x ) X, Galois., Q l, l p., Grothendieck, G Ql

p V Weil-Deligne W l (V ). V W l (V ) Deligne, Langlands ([De73]), Weil-Deligne, L l (W l (V )), ε l (W l (V )), V ε geom l (V ) (V )., l p G Ql p p. G Ql (l p) p = p,, Q l, l p ( [Ya09])., p ( Q ) l = p (G Qp p ) 2. G Qp 2 p., l = p. 2.1.4. l = p ( 1) G Qp p, G Qp p,. G Qp p V, Fontaine p ([Fo82], [Fo94]) Q p D crys (V ), D dr (V )., D crys (V ) Frobenius φ : D crys (V ) D crys (V ), D dr (V ) (Hodge ) {D i dr (V )} i Z. V Q p X H í et (X Q p Q p, Q p ), D dr (V ) X de Rham H i dr (X/Q p), X Z p X, D crys (V ) X Fp := X Zp F p H i crys(x Fp /Z p ) (. p Hodge!!). ( ), Fontaine = {crys, dr} dim Qp D (V ) = dim Qp (V ) V,, de Rham., X H í et (X Q p Q p, Q p ) de Rham, X Z p,., G Qp p Galois de Rham p. G Qp p = de Rham

, l = p p (!). ε geom p {de Rham } { p } (V ) (V ), de Rham V ε geom p (V ) (V )., l p Grothendieck l = p p ([Be02]) ( l = p!)., de Rham V Weil-Deligne W p (V ), V W p (V ) L p (W p (V )), ε p (W p (V )) l p. V W p (V ), l p V W l (V ) V, l = p V W p (V ) V., l = p ε geom p (V ) L p (W p (V )), ε p (W p (V )). ε geom p (V ),, D dr (V ) Hodge. D i dr (V )/D i+1 dr (V ) {0} i V Hodge-Tate, εgeom p (V ) V Hodge-Tate., ε geom p (V ), Bloch- exponential ([BK90]) exp V : D dr (V )/DdR(V 0 ) H 1 (Q p, V ) exponential exp V : H 1 (Q p, V ) D 0 dr(v ) ([Ka93a]).,, V G Q p, H 1 (Q, V ) loc p H 1 (Q p, V ) H 1 (Q, V ) loc p H 1 (Q p, V ) exp V DdR(V 0 ),, H 1 (Q, V ) L., ε geom p (V ). ε geom p (V ) = {L p (W p (V )) + ε p (W p (V )) + Hodge Tate + exp V + exp V } (, +, ) ( ).

1 p ( [Ka93b]) Dfm(V ) (V ) (Benois-Berger[BB08], Loeffler-Venjakob- Zerbes[LVZ15]) (trianguline ) ([Na17a]), V derham V W p (V ) (, 1 )., ε p (W p (V )) Gauss. Gauss p Galois,. W p (V ) ( ). 1([Na17b]),. 1 2 p ( ), F F p, G Qp F 2 T. R univ T, T univ V ( )., (T univ ) ε p (T univ ) (T univ ),, x Spec(R univ [1/p]) T univ x V x de Rham, ε p (T univ ) x ε p (V x ) ε p (V x ) = ε geom p (V x ). ε p (T univ )., ε p (V x ) = ε geom p (V x ) W p (V ),. ε p (V x ) = ε geom p (V x ), GL 2 (Q p ) p Langlands. 4. 2.2. 2.2.1.? p 3. A Q := Ẑ Z Q Q, π GL n (A Q ). L, π L L(π, s) L Λ(π, s) := L (π, s)l(π, s), Λ(π, s) ( ) Λ(π, s) = ε(π, s)λ(π, 1 s) (, π π )., ε(π, s), Q l π ε(π l, s) ε(π, s) = l ε(π l, s)

(, ). z(t ) (T ). S p. Q S l S Q Galois, Galois G Q,S := Gal(Q S /Q). T ( )Z p [[T 1,..., T d ]] G Q,S, T, T (1) := T Zp Z p (1)(T Tate ). T S (T )(G Q,S Galois ), l S T GQl l (T )., Galois Galois Poitou-Tate, S (T (1)) l S l (T ) R S (T ).,. T, T (1), z S (T ) S (T ), ε l (T ) l (T )., z S (T (1)) = l S ε l (T ) z S (T ) T ([Ka93b],[FK06])., z S (T ) z S (T (1)), p V z geom (V ) L L(V (1), s) s = 0.,., z(t ) ε p (T )., L L (π, s) (Hodge ) ε p (V ) Hodge-Tate. 2.2.2. 1 S = {p}, G Q,S Z p (1) Dfm(Z p (1))., z Iw S (Z p (1)) Iw S (Z p (1)), ([Ka93b]). 2.2.3. ( 2) ε Iw p (Z p (1)) Iw p (Z p (1)) 2, 2. 2.1.2 f, S := {l N} {p}., 2.1.2 z S Iw(V f) Iw S (V f), 1 Dfm(V f ) GQ p ε Iw p (V f ) Iw p (V f ) p ([Na17b]). 2 f z Iw S (V f )

3. GL 2 (Q p ) p Langlands GL 2 (Q p ) p Langlands, G Qp 2 p GL 2 (Q p ) p Banach., (Frobenius )Weil-Deligne 2 GL 2 (Q p ) GL 2 (Q p ) Langlands p., C, p Langlands G Qp GL 2 (Q p ) p., p Langlands. Breuil([Br03a],[Br03b], [Br04]), Colmez([Co10]) (φ, Γ) ([Fo91]) Galois GL 2 (Q p ), Berger-Breuil([BBr10]), Kisin([Ki10]), Pasukunas([Pa13]), Colmez- Dospinescu-Paskunas([CDP14])., Colmez G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) ( ). p, p. Emerton([Em11]) Kisin([Ki09]), p, G Q 2 p Galois V Fontaine-Mazur (Wiles -, ). GL 2 (Q p ) p Langlands 1. Emerton Kisin Fontaine-Mazur,,, (φ, Γ) (Colmez )., Colmez, GL 2 (Q p ) p Langlands! Colmez, 2 w := ( 0 1 1 0 ) GL 2 (Q p ), ( Langlands ),. 1 2! w. (φ, Γ), G Qp 2 p T, B GL 2 (Q p ) Π(T )

(, T ). Π(T ) w GL 2 (Q p ) p Langlands.. V G Qp 2 p, Π(V ) GL 2 (Q p ) Banach. Π(V ) Π(V ) := Hom cont F (Π(V ), F ) (F Π(V ) Q p ), x Π(V ), y Π(V ) [x, y] := x(y) F. Π(V ) y, x Π(V ) GL 2 (Q p ) g [g x, y] F. Π(V ) Π(V ) alg. Colmez Π(V ) alg {0} V de Rham regular (, V Hodge-Tate (, 2 ) k 2 > k 1 regular ). Colmez Emerton([Em11]),, GL 2 (Q p ) ( ) Π(V ) alg π LL (W p (V )) F Sym k 2 k 1 1 (F 2 ) F det k 1 (, π LL (W p (V )) Langlands W p (V ) GL 2 (Q p ) ( F ) ) ( Langlands )., GL 2 (Q p ) p Langlands ( ), Emerton W p (V ) ( π LL (W p (V )) supercuspidal ), ( ). 4. 2 1. (G Qp 2 p T ) ε p (T ), ε geom p (V ),. 4.1. ε p (T ) (w ) Kirillov (GL 2 (Q p ) smooth Q p ), GL 2 (Q p ) smooth π ( ε p (π) ), w GL 2 (Q p ) π., G Qp 2 p T, Banach Π(T ) w T ε p (T ) (T ).

, Dfm(T ) ε Iw p (T ) Iw (T ) ( ε p (T ) (T ) ). Dfm(T ) Iw (T ) HIw 1 (Q p, T ), HIw 1 (Q p, T ) Π(T ).,, V = T 2 p ( ) p 0 ( T ). g p := 0 1 ( ) 1/p 0, Π(V ) δ. Π(V ) Π(V ) 0 1/p g p (Π(V ) ) gp=1, g p δ (Π(V ) ) gp=δ. w. γ Γ w : (Π(V ) ) g p=1 ( ) χ(γ) 0 0 1 (Π(T ) ) g p=δ GL 2 (Q p ) (χ : Γ Z p p ), (Π(V ) ) g p=1 (Π(V ) ) g p=δ Λ[1/p] ( (Π(V ) ) g p=δ )., Colmez, Λ[1/p] (Π(V ) ) gp=1 H 1 Iw(Q p, V ), (Π(V ) ) gp=δ H 1 Iw(Q p, V (1)) (!)., w w : H 1 Iw(Q p, V ) H 1 Iw(Q p, V (1))., ε Iw p (V ) Iw (V ), Dfm(V ) Tate {, } Tate : H 1 Iw(Q p, V ) H 1 Iw(Q p, V (1)) Λ[1/p] 2 H 1 Iw (Q p, V ) (H 1 Iw (Q p, V ) 2 Λ[1/p] ) 2 H 1 Iw(Q p, V ) Λ[1/p] : x 1 x 2 {x 1, w x 2 } Tate. 4.2. ε geom p (V ) ( Langlands ) V regular 2 de Rham. 2.1.4. ε geom p (V ) (V ) 4.1 ε p (V ) (V ). V Weil-Deligne W p (V ) ( π LL (W p (V )) supercuspidal ),., ε geom p (V ), x H Iw (Q p, V ) α : H 1 iw(q p, V ) sp H 1 (Q p, V ) exp V D 0 dr(v )

α(x) ε p (W p (V )) 2, ε geom p (V ) ε p (W p (V )) + α(x) ε p (V ) x H Iw (Q p, V ) w : H 1 Iw (Q p, V ) H 1 Iw (Q p, V (1)) β : H 1 Iw(Q p, V (1)) sp H 1 (Q p, V (1)) exp V (1) D 0 dr(v (1)) β(w x) ( Hodge-Tate, ). ε p (V ) β(w x), ε p (V ) = ε geom p (V ), ε p (W p (V )) + α(x)? β(w x). 4.1.1 x (Π(V ) ) g p=1, w x (Π(V ) ) g p=δ Π(V ). Colmez Kirillov (B Π(V ) alg Q p ), Q p y α, y β Π(V ) alg, x (Π(V ) ) g p=1, x (Π(V ) ) g p=δ ( ) α(x) [x, y α ], β(x ) [x, y β ]. y α, y β,, Langlands Π(V ) alg π LL (W p (V )) F Sym k 2 k 1 1 (F 2 ) det k 1 π LL (W p (V )) Kirillov w y β y α ε p (π LL (W p (V ))). w y β ε p (π LL (W p (V ))) + y α GL 2 (Q p ) Langlands ε p (π LL (W p (V ))) = ε p (W p (V )), w y β ε p (W p (V )) + y α. ε p (V ) β(w x) [w x, y β ] [x, w y β ] ε p (W p (V )) + [x, y α ] ε p (W p (V )) + α(x) ε geom p (V )

ε p (V ) ε geom p (V ). Langlands ε p (V ) = ε geom p (V ), ε p (V ) = ε geom p (V )( V ),, Π(V ) alg w, Π(V ) alg smooth π LL (W p (V ))., ε p (V ) = ε geom p (V ) Langlands! 5. 1 ε p (V ) = ε geom p (V ) Langlands GL 2 (Q p ) p Langlands = G Qp 2. G Q 2, Emerton ([Em11]). ([CEGGPS16a], [CEGGPS16b], [GN17] ), p Langlands, = G Q 2. [BB08] D. Benois, L. Berger, Théorie d Iwasawa des représentations cristallines. II, Comment. Math. Helv. 83 (2008), no. 3, 603-677. [BBr10] L. Berger, C. Breuil, Sur quelques représentations potentiellement cristallines de GL 2 (Q p ), Astérisque 330, 2010, 155-211. [Be02] L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219-284. [BK90] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math. 86, Birkhäuser Boston, Boston, MA 1990. [Br03a] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 (Q p ). I, Compositio Math. 138 (2003), 165-188. [Br03b] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 (Q p ). II, J. Inst. Math. Jussieu 2 (2003), 1-36. [Br04] C. Breuil, Invariant L et série spéciale p-adique, Ann. Scient. de l E.N.S. 37 (2004), 559-610. [CEGGPS16a] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paskunas, S. Shin, Paching and the p-adic local Langlands correspondence, Cambridge Journal of Mathematics 4 (2016), no. 2, 197-287. [CEGGPS16b] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paskunas, S. Shin, Patching and the p-adic Langlands program for GL 2 (Q p ), preprint. [Co10] P. Colmez, Représentations de GL 2 (Q p ) et (φ, Γ)-modules, Astérisque 330 (2010), 281-509.

[CDP14] P. Colmez, G. Dospinescu, V. Paskunas, The p-adic local Langlands correspondence for GL 2 (Q p ), Cambridge Journal of Mathematics, Volume 2, Number 1 (2014), 1-47. [De73] P. Deligne, Les constantes des équations fonctionelles des fonctions L, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 501-597. Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973. [Em11] M. Emerton, Local-global compatibility in the p-adic Langlands programme for GL /Q, preprint, available at http://www.math.uchicago.edu emerton/preprints.html. [Fo82] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d un corps local; construction d un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529-577. [Fo91] J.-M. Fontaine, Représentations p-adiques des corps locaux, The Grothendieck Festschrift, vol 2, Prog. in Math. 87, Birkhäuser (1991), 249-309. [Fo94] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque 223 (1994), 59-111. [FK06] T. Fukaya, K. Kato, A formulation of conjectures on p-adic zeta functions in non commutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society. Vol. XII (Providence, RI), Amer. Math. Soc. Transl. Ser. 2, vol. 219, Amer. Math. Soc., 2006, pp. 1-85. [FK12] T. Fukaya, K. Kato, On conjectures of Sharifi, preprint, [GN17] T. Gee, J. Newton, Patching and the completed homology of locally symmetric spaces, preprint. [Ka93a] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dr. Arithmetic algebraic geometry, Lecture Notes in Mathematics 1553, Springer- Verlag, Berlin, 1993, 50-63. [Ka93b] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dr. Part II. Local main conjecture, unpublished preprint. [Ka04] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117-290, Cohomologies p-adiques et applications arithmétiques. III. [Ki09] M. Kisin, The Fontaine-Mazur conjecture for GL 2, J. Amer. Math. Soc. 22 (2009), no. 3, 641-690. [Ki10] M. Kisin, Deformations of G Qp and GL 2 (Q p )-representations, Astérisque 330 (2010), 511-528. [LVZ15] D. Loeffler, O. Venjakob, S. L. Zerbes, Local ε-isomorphism, Kyoto J. Math. 55 (2015), no.1, 63-127. [Na17a] K. Nakamura, A generalization of Kato s local ε-conjecture for (φ, Γ)-modules over the Robba ring, Algebra and Number Theory 11-2 (2017), 319-404. [Na17b] K. Nakamura, Local epsilon isomorphisms for rank two p-adic representations of Gal(Q p /Q p ) and a functional equation of Kato s Euler system, to appear in Cambridge Journal of Mathematics. [Oc06] T. Ochiai, On the two-variable Iwasawa Main conjecture for Hida deformations, Compositio Mathematica, vol 142, 1157-1200 2006. [Pa13] V. Paskunas, The image of Colmez s Montreal functor, Publications Mathématiques de l IHÉS 118, Issue 1 (2013), 1-191. [Pe95] B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques. Astérisque No. 229 (1995), 198 pp. [Ya09] S. Yasuda, Local constants in torsion rings, J. Math. Sci. Univ. Tokyo 16 (2009), no. 2, 125-197.