[6] G.T.Walker[7] 1896 P I II I II M.Pascal[10] G.T.Walker A.P.Markeev[11] M.Pascal A.D.Blackowiak [12] H.K.Moffatt T.Tokieda[15] A.P.Markeev M.Pascal

Similar documents

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

数学演習:微分方程式

Gmech08.dvi


08-Note2-web

重力方向に基づくコントローラの向き決定方法

( ) ( )

Untitled

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

xia2.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

A 99% MS-Free Presentation

第1章 微分方程式と近似解法

Gmech08.dvi

Gmech08.dvi


1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

ohp_06nov_tohoku.dvi

TOP URL 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

K E N Z OU

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

JFE.dvi

QMI_09.dvi

QMI_10.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

ver.1 / c /(13)

2000年度『数学展望 I』講義録

pdf

1 c Koichi Suga, ISBN

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

sakigake1.dvi

chap1.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

構造と連続体の力学基礎

sec13.dvi

数値計算:常微分方程式

all.dvi

Note.tex 2008/09/19( )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

曲面のパラメタ表示と接線ベクトル

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

keisoku01.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

TOP URL 1

untitled

DE-resume

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

( ) ,

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


Untitled

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

日本数学会・2011年度年会(早稲田大学)・企画特別講演

all.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

OHP.dvi

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

untitled

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

201711grade1ouyou.pdf

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

chap03.dvi

SO(2)


B ver B

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

II 1 II 2012 II Gauss-Bonnet II

Microsoft PowerPoint - 回る卵の研究物語

TOP URL 1

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Transcription:

viscous 1 2002 3 Nature Moffatt & Shimomura [1][2] 2005 [3] [4] Ueda GBC [5] 1 2 1 1: 2: Wobble stone 1

[6] G.T.Walker[7] 1896 P I II I II M.Pascal[10] G.T.Walker A.P.Markeev[11] M.Pascal A.D.Blackowiak [12] H.K.Moffatt T.Tokieda[15] A.P.Markeev M.Pascal M.Pascal A.P.Markeev H.Bondi[13] G.T.Walker n c concordance discordance G.T.Walker M.Pascal A.P.Markeev H.Bondi n c A.Garcia M.Hubbard [14] H.Bondi 2

T.R.Kane [8] R.E.Lindberg R.W.Longman[9] A.Garcia M.Hubbard Coulomb A.Garcia & M.Hubbard Coulomb 1 n 0 n 0 n c1 n c2 2 3 a b a a b (viscous M.Pascal n c1 n c2 3

2 2.1 m g 3 3: 4: X, Y Z Z X, Y, Z a cm, b cm,c = 1 cm x, y z δ P x p = (x, y, z) ω P u n n 4 Ru Rf F x p F F Coulomb viscous Coulomb viscous f = µv p µ v p R f v p d dt v p u L 4

v g = v p + x p ω d dt L = x p F (1) m d dt v g = F mgu (2) F = Rµv p + Ru (3) ( ) d R = mg + m dt (x p ω) u (4) 2.2 ω v p G.T.Walker H.Bondi ω x p x y n u ω x y x, y a b a < 1, b < 1 n 1 µ ( p, q, s z 1 p ( x ) 2 2 c + q xy ( y ) ) 2 c c 2 + s 2 p, q, s a, b, δ ) n 2, np v p x, y x, y, n M.Pascal Ẍ + ν 2 1X + a 1 Ẋ + a 2 Ẏ = 0 Ÿ + ν 2 2X + a 3 Ẋ + a 4 Ẏ = 0 I 3 ṅ k 1 XẌ + k 3XŸ k 2Y Ẍ + k 4Y Ÿ s 1 XẊ s 2XẎ s 3Y Ẋ s 4Y Ẏ = 0 X, Y x, y I 3 z a i a 1 = m 1 nk 1, a 2 = m 2 nk 2, a 3 = m 3 + nk 3, a 4 = m 4 + nk 4 m i 1 µ k i, s i a, b, δ 2.3 1 4 n, x, y 5 6 7 5

5: n(t) 6: x(t) n(t) 7: y(t) n(t) x(t), y(t) A(t), B(t) M.Pascal I 3 ṅ = k 1ν 2 1 2 A2 + k 4ν 2 2 2 B2, Ȧ = a 1 2 A Ḃ = a 4 2 B (5) 2.4 n c1 e a1t, e a4t a 1, a 4 n a 1 = 0, a 4 = 0 n n c1+ n c1 n c1 n c1+ a 1 > 0, a 4 > 0 k 1 > 0 n c1 n c1+ n c1+ = m 1 k 1 n c1 = m 4 k 4 = f 1 cos 2 θ + f sin 2 θ J 2 µ sin θ cos θ = f cos2 θ + f 1 sin 2 θ J 2 µ sin θ cos θ k 1 < 0 θ δ f J2 J 1 J 1,2 2.5 n c2 n c1 n n 0 > 0 n 0 n 1 < 0 n 1 6

5 n 1 = n 0 + 2m 1 n 1 n 1 < 0 n 0 > 2m 1 k 1 n 0 < 2m 1 k 1 n c1+ = m 1 k 1 n c1+ < n 0 < 2m 1 k 1 2m 1 n c2+ k 1 n c2 = 2m 4 k 4 n c2 < n 0 < n c1 n c1+ < n 0 < n c2+ n c2± k 1 2.6 r n r n 2.4 2.5 K 0 (r, ρ) K 0 (r n 1, ρ) < 1 h 1 < K 0 (r n, ρ) r 1 + ( 1) i i=0 2 + 1 + ( 1)i+1 ρ 2 h 1 2m 1 k 1 n 0, h 4 2m 4 k 4 n 0, ρ h 4 h 1 ρ, h 1 1 r n = 2[ h 1 (ρ + 1) ], r 1 n = 2[ h 1 (ρ + 1) ] + 1 [x] x 8 r n 1 4 2.7 δ θ µ 2 h 1 (ρ+1) 2 h 1 (ρ + 1) = J 2µ n 0 sin θ cos θ L(f), L(f) f f 1 1 + f 2 7

8: µ, δ, n 0 δ 1 δ L(f) a J 2 f J 1 b f f = 2 + 5 9 a = 10 b 1 10 L(f) b 4.4 10 b = 1 10 b 3 viscous 8

10: µ = 100 9: a=10 b 1 viscous Coulomb Coulomb v p v p = 0 Λ Coulomb f = µ v p v p (Λ) v p (Λ) vp1 2 + v2 p2 + Λ2 [5] Λ Coulomb 2 a > b J 2 < J 1 2 z z x, y θ δ = 0 3 v p 9

[1] H.K.Moffatt and Y.Shimomura. Spinning eggs - a paradox resolved Nature V.416,385-387(2002) [2] H.K.Moffatt, Y.Shimomura and M.Branicki Dynamics of ans axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation Proc.R.Soc. Lond. A 460,3643-3672(2004) [3] Y.Shimomura,M.Branicki and H.K.Moffatt. Dynamics of an axisymmetric body spinning on a horizontal surface.ii. Self-induced jumping Proc.R.Soc. A 461,1753-1774(2005) [4] T.Mitsui,K.Aihara,C.Terayama,H.Kobayashi and Y.Shimomura. Can a spinning egg really jump? Proc.R.Soc. A 462,2897-2905(2006) [5] T.Ueda, K. Sasaki and S. Watanabe Motion of the Tippe Top : Gyroscopic Balance Condition and Stability SIAM Journal on Applied Dynamical Systems 4, 1159-1194 (2005) [6] http://www.youtube.com/watch?v=0_145zvizxm [7] G.T.Walker. On a Dynammical Top,Quarterly journal of pure and applied mathmatics Vol.28,175-185(1896) [8] T.R.Kane and D.A.Levinson Ralistic Mathematical Modeling of the Rattleback, I.J.Non- Linear Mechanics, V.17,No.3,175-168(1982). [9] R.E.Lindberg and R.W.Longman On the Dynamic Behavior of the Wobblestone, Acta Mechanica, V.49,81-94(1983). [10] M.Pascal Asymptotic Solution of the Equations of Motion for a Celtic Stone, Journal of Applied Mathematics and Mechanics.V.47,No2,269-276(1983) [11] A.P.Markeev. On the dynamics of a solid on an absolutely rough plane, Journal of Applied Mathematics and Mechanics.V.47,No4,473-478(1984) [12] A.D.Blackowiak,R.H.Rand and H.Kaplan The dynamics of the celt with second order aberaging and computer algebra, Proc. ASME DETC 97/VIB-4103(1997) [13] H.Bondi. The rigid body dynamics of unidirectional spin, Proc. R. Soc. Lond. A 405,265-274(1986) 10

[14] A.Garcia and M.Hubbard Spin reversal of the rattleback:theory and experiment Proc.R.Soc. Lond. A148,165-197(1998) [15] H.K.Moffatt and T.Tokieda. Celt reversals:a prototype of chiral dynamics, Proc. R. Soc. Edinburgh. A 138,361-368(2008) 11