2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Similar documents
30

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

QMI13a.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

: , 2.0, 3.0, 2.0, (%) ( 2.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Part () () Γ Part ,

³ÎΨÏÀ

II 2 II

Maxwell

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Gmech08.dvi

DVIOUT-fujin

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

all.dvi

notekiso1_09.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

untitled

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

i Γ

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Untitled

ohpmain.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

201711grade1ouyou.pdf


u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

°ÌÁê¿ô³ØII

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

i

untitled


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

I

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

TOP URL 1

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Z: Q: R: C:

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

Z: Q: R: C: sin 6 5 ζ a, b

量子力学 問題

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

i

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


Chap11.dvi

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

A

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1

body.dvi

2011de.dvi

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

phs.dvi


振動と波動

19 /

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

プログラム

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l


ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Transcription:

. X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n F (k) k=0 2 V (X) = (X X ) 2 = n (x i X ) 2 P i = X 2 X 2 n P i Z n P i P i Z P i P i f(x) = n f(x i ) P i = Z n f(x i )P i

.2. 3.2 X [x min, x max ] X x [x, x + x] P (x) x P (x) xmax P (x)dx = x min f(x) = X n = Z = f(x) = Z xmax x min xmax x min xmax x min xmax x min f(x)p (x)dx x n P (x)dx P (x)dx f(x)p (x)dx n P (x) = δ(x x i )P i x P (x) x x+ x n x δ(x x i )P i Lesbergue (3)

4 x 2 x P (x) x dp (x) x P (x) dx.3 S I 3 S I n P i log P i log P S I 0 P i 0 S I = 0 S I P i S I P i Lagrange λ λ I S I + λ( P i ) = P i (log P i + λ) + λ di dp i = log P i λ = 0 P i i e λ x i λ P i = n 4 S max I = n log n = log n X n 2 3 I 4 λ λ P i P i = e λ λ

.4. Gauß 5 5 S I = log P = xmax x min P (x) log P (x)dx Lagrange I S I + λ( P (x)dx) = P (x)(log P (x) + λ) + λ P (x) δi = [log P (x) + λ + ]δp (x)dx = 0 δp (x) P (x) = e λ P (x) x.4 Gauß X (, ) Gauß Z = Gauß P (x) e (x x 0 ) 2 2σ 2 P (x)dx = P (x) = e (x x 0 ) 2 2σ 2 2πσ e (x x 0 ) 2 2σ 2 dx = 2πσ X X = 2πσ xe (x x 0 ) 2 2σ 2 = x 0 V (X) = 2πσ x 2 e (x x 0 ) 2 2σ 2 x 2 0 = σ 2 5 Lesbergue P (x) x

7 2 2. ( ) 0 2 3 H = H i + H int H int = i,j U ij + i,j,k V i,j,k + Ψ n Schrödinger H Ψ n = n Ψ n n(= 0,, 2...) H n n n 2 3 (solid-state physics) (condensedmatter physics) 2 0 3

8 2 n [, + ] ( 4 W (, ; ) W (, ; ) = + δ( m )d W (, ; ) m W (, ; ) Ω(; ) 5 Ω(; ) Ω 0 (; ) W (, ; ) = Ω 0 ( + ; ) Ω 0 (; ) = Ω 0(; ) Ω(; ) = Ω 0(; ) W (, ; ) W (, ; ) ε 0 /ε 0 /ε 0 ε 0 O() ε 0 4 5

2.2. 9 O( 0 ) W (, ; ) W (, ; ) W (, ; ) O( 0 ) / Ω W (, ; ) = Ω( ; ) ε 0 + O(( )2 ) Ω(; ) = Ω( ε 0 ; ) Ω Ω(; ) = ε 0 Ω( ε 0 ; ) H = H i Schrödinger H i ψ (i) l i = ε (i) l i ψ (i) l i Ψ n = n = 6 n (l, l 2,..., l ) ψ (i) l i ε (i) l i 2.2 i ε ( i) = 0, ε 0 6

0 2 /2 0 ɛ 0 = 0 ɛ 0 ε 0 ε 0 ω() ω() = C m = ε (i)! m!( m)! (m ε 0 ) ω() ω() ω() /ε 0 = /2 ε 0 ω() ε 0 [, + ] W (, ; ) = + δ( mε 0 )ω(mε 0 )d = m=0 + δ( mε 0 )ω( )d ω() 7 ω( ) = ω() + ω ( ) + W (, ; ) = ω() ε 0 Ω(; ) = ω() ε 0 = ε + O(( )2 ) m=0 Γ( + ) Γ( ε 0 + )Γ( + ε 0 ) ε 0 Ω( ε 0 ; ) 8 7 ω() 8 Stirling

2.3. Stirling Γ(n + ) ( n ) n 2πn (n ) e Ω(; ) = [ ( ) ε ( 0 2 ) ] ε 0 2 2πε0 ε 0 ε 0 ε 0 Ω( ε 0 ; ) O( 0 ) 2 023 O( 0 ) ε 0 9 0 Ω(; ) = [ ( ) ε 0 ( ) ] ε 0 2πε0 ε 0 ε 0 2.3 ω m Ĥ = 2m ˆp2 + mω2 2 ˆq2 ε l = hω(l + )(l = 0,, 2,...) 2 hω Ĥ = n = 2 hω + L n hω, L n = 2m ˆp2 i + mω2 2 ˆq2 i l i = 0,, 2,... 9 0 Ω(; )

2 2 n l i 2 hω hω hω ω() L = Ē hω 2 ω() = L+ C = (L + )! l!( )! hω [, + ] W (, ; ) = 3 + δ( L hω)ω( )d L=0 W (, ; ) = ω() hω Ω(; ) = ω() hω = hω Γ( Ē hω + ) Γ( Ē hω + )Γ() Stirling Ω(; ) = 2π hω ( + ( hω hω ) hω + 2 ) + hω 2 ( ) 2 O( 0 ) O( 0 ) O(/) 4 Ω(; ) = ( + 2π hω hω ( hω ) + hω ) hω 2 L L L + L+ C 3 ω() 4

2.4. 3 2.4 2.4. L m H = 2m (ˆp2 x + ˆp 2 y + ˆp 2 z) 5 Schrödinger h2 2m Ψ n(x, y, z) = n Ψ n (x, y, z) Ψ n (x, y, z) = L 3 exp[ ī h (pxx + p yy + p z z)] 6 p x = h L n x, p z = h L n z, p z = h L n z(n x, n y, n z = 0, ±, ±2...) n = 2m ((p2 x + p 2 y + p 2 z) n (n x, n y, n z ) (p x, p y, p z ) h L 7 h L p x, p y, p z h L [p x, p x + p x ], [p y, p y + p y ], [p z, p z + p z ] ( ) 3 L p x p y p z h 8 p 2 x + p 2 y + p 2 z = 2m Ω 0 () 2m ( L h ) 3 Ω 0 () = 4π 3 (2m)3/2 ( L h 5 0 6 7 8 ) 3

4 2 [, + ] W (, ) = Ω 0 ( + ) Ω 0 () = Ω 0() = 2π g() W (, ) = g() g() = 2π ( ) 3 L (2m) 3/2 h ( ) 3 L (2m) 3/2 h /2 g g() = ɛ 0 g( ɛ 0 ) g() g() /2 ɛ 3/2 0 g() 9 ɛ 0 = m ( ) 2 h L g() = 25/2 π ɛ 3/2 0 ɛ0 2 20 ɛ 0 ( 9 ɛ 0 = h ) 2 2m L ɛ 0 ( 20 h L δ frac2m h 2 L) δ 2 h m L δ = h 6m L δ h m L ɛ 0

2.4. 5 2.4.2 H = 2m n = 2m (ˆp 2 ix + ˆp 2 iy + ˆp 2 iz) ((p 2 ix + p 2 iy + p 2 iz) p ix = h L n ix,..., (n ix,... = 0, ±, ±2...) n 3 (n x, n y, n z,..., n z ) 3 2 ( h 3 V ) Π p ix p iy p iz 22 ( ) V h 3 Π p ix p iy p iz p 2 ix + p 2 iy + p 2 iz = 2m 3 Ω 0 (; ) 2m 3 ( ) 3 ( Ω 0 (; ) = π3/2 L Γ( 3 2 + = π3/2 2 )(2m)3/2 h Γ( 3 2 + ) Stirling ( 4πe Ω 0 (; ) = 3π 3 ) 3/2 ɛ 0 ) 3/2 2 22 p p

6 2 W ( ; ) W ( 3/2 ) 23 2 s 2 t t 2 s 2 Ω 0 (; ) 24 2 25! Ω 0 (; ) Ω 0 (; ) = ( ) 3/2 ( 4πe 4πe 5/3 =! 3π 3 6π 3 ɛ ) 3/2 ɛ = 2/3 ɛ 0 = h2 m ( ) 2/3 V 26 ɛ V ɛ 0 ɛ! 27 Ω(; ) = ( 4πe 5/3 6π 3 ɛ ) 3/2 28! 23 ɛ 0 24 25 26 ɛ 27 28

2.5. 7 29 ɛf 0 g(ɛ)dɛ = ɛ F 30 3 ɛ F ɛ ɛf 0 ɛg(ɛ)dɛ = ɛ5/2 F ɛ 3/2 0 ɛ5/2 = ɛ ɛ 3/2 0 32 ɛ 33 ɛ 2.5 3 r i p i 6 6 6 6 ( ) 34 29! 30 ɛ F ( 3 4π ) 3/2 3 32 2 33 epsilon epsilon 34 ( )

8 2 35 36 Π i r i p i A Π i r i p i 37 A [ ] 3 A 2.5. L 2m H = p 2 i p 2 i = 2m L ( ) Π dx i dy i dz i θ 2m Π dp xi dp yi dp zi 0 (θ(x) ) V 2m 3 A Ω cl 0 (; ) = A V π3/2 Γ( 3 2 + )(2m)3/2 38 A =!h 3!h 3 39 35 36 Liouville 37 A A 38 cl 39 A p 2 i

2.5. 9 ɛ ɛ 40 2.5.2 H = p 2 i 2m + mω2 q 2 2 p 2 i + (mωx) 2 = 2m L ( ) Π dx i dy i dz i Π dp xi dp yi dp zi θ 2m p 2 i + (mωx) 2 0 2 0 () = π A (mω) Γ( + ) ( 2m) 2 = ( ) 2π = (eh) ( A Γ( + ) ω A 2π hω Ω cl Ω cl () = Ωcl 0 () = A 2π (eh) Ω() = hω [ = hω 2π Γ( Ē hω +) Γ( Ē hω +)Γ() hω (+ hω ) + hω 2 ( hω ) hω + 2 ( ) 2 hω { [ = hω 2π + hω ( )] + hω ( ) 2 ( ) hω 2 Stirling 4 ] } ) 40 4 ( )

20 2 hω hω hω hω 42 [ lim + hω hω ( ] ) hω = e Ω(; ) = [ ( ) ( e ) + ] 2 hω 2π hω ( ) + 2 e 2 / 2 Ω(; ) = ( ) hω 2π e hω A = h 43 44 f ( 2f)A h f 45! 46 42 43 ɛ 0 44 = 45 [ ]/h f 46!!

2 3 3. 2 3 0 23 ( ) [, + ] 4 2 3 4

22 3 3.2 5 A = lim T A(t)dt T T A(t) A t A(t) 0 23 6 0 T i S i (T ) Si(T ) T T i 0 S i (T ) P i lim T T A P i A = i P i A i A i A i P i 7 8 P i [, + ] 5 m/s m (/ ) 6 0 6 7 P i P i 8

3.2. 23 P i 9 W (, ; ) P i = W (, ; ) [, + ] W (, ;) A = W (, ; ) 0 V = V = V W = = W H = W U i i U = 2 U(S, V, ) 3 S = log P = k B P i log P i 9 0, V 2 trivial 3 U (S, V, ) T U(T, V, ) i i i i A i

24 3 k B 4 S = k B i W log W = k B log W (, ; ) 56 (U, V, ) 7 T = P T = ( ) S U ( ) S V 2 V, U, S +2 = S + S 2 W +2 = W W 2 3.3 ( 0 23 ) ( 0 ɛ 0 ). [, + ] 4 5 6 k B S = log W T S k B T SI 7

3.3. 25 8 2. 3. 9 S = k B log Ω(; ) = k B log Γ ɛ [ ( ) 0 U = k B log U U log ΓΓ ( ) U + 2 log 2π + O ( ) ] + log ɛ 0 0 23 log 00 20 O(log ) log O( 0 ) O ( ) 0 20 [] U O() 2 log ɛ 0 ɛ 0 22 O() ɛ 0 log ɛ 0 O(log ) 23 S(U, ) = k B [ U log U + ( U ) ( log U )] ( ) S T = = k [ ( )] B ɛ0 log U ɛ 0 U 8 2 3 2 3 2 3 9 20 2 V V O() 22 < ɛ 0 23

26 3 U = exp(βɛ 0 ) + β k BT c = ( ) U = k B (βɛ 0 ) 2 exp(βɛ 0 ) T [exp(βɛ 0 ) + ] 2 U βɛ 0 = ɛ0 k BT ɛ 0 ɛ 0 24 kbt k B T ɛ 0 25 ɛ0 k BT U = 2 ( βɛ 0 2 ) ɛ 0 ɛ0 k BT c = k B 4 (βɛ 0) 2 T U 2 c 0 26 ɛ0 k BT exp( βɛ 0 U = exp( βɛ 0 ) c = k B (βɛ 0 ) 2 exp( βɛ 0 ) T 0 U 0 27 ɛ 0 ɛ 0 exp( βɛ 0 ) k B T ɛ 0 log k B T 28 24 u = U t = k BT ɛ 0 25 ɛ 0 26 T U U > 2 0 < U < 2 27 28

3.4. 27 3.4 ( 0 23 ) ( ω). [, + ] 2. 3. Ω(; ) = hω Γ( Ē hω + ) Γ( Ē hω + )Γ() = hω Γ(( hω + )) Γ(( hω + ))Γ() hω O( 0 )( ) 29 u Ω(; ) = hω hω Γ((u + )) Γ((u + ))Γ() = 2π hω (u + )(u+ x (u+ Stirling 2 ) 2 ) ( )( log Ω(; ) = [ (u + 2 ) log(u + ) (u + 2 ) log u ( 2 ) log( ) + 2 log 2π + log hω log( + a) a + O() O( 0 ) 30 [ log Ω(; ) (u + ) log(u + ) u log u + 2 log + ] log hω + O( 0 ) 3 U U S(U, ) = k B [( + ) log( hω hω + ) ] U hω log U ] hω 29 O() 30 log 3 log hω hω log 2 )

28 3 T = ( ) S = k ( B U hω log + hω ) U U hω = exp(β hω) 32 c = ( ) U = k B (β hω) 2 exp(β hω) T [exp(β hω) ] 2 hω k BT ( ( U hω = k BT hω ) ) hω 2 + O k B T c = k B ( + O ( ( ) )) 2 hω k B T T U k B T c k B U = k B T c = k B = = 33 hω k BT exp( β hω) U = exp( β hω) c = k B (β hω) 2 exp( β hω) T 0 U 0 34 k B T hω log 3.5 T 0 0 a (a O( 0 ) ) 0 32 U β hω = hω hω k B T hω ω 33 = = 34

3.6. 29 3.6 [, + ] [( 3 S = k B log Ω(; ) = k B 2 ) ( ) 4πe 5/3 log + 3 ɛ log 3 2 6π + ] log ɛ ɛ = h2 m ( ) 2/3 V S(U, V, ) = 3 ( ) 4πe 5/3 2 k U B log 3 ɛ k B T = 2U 3 c v = 3 2 kb pv = 2U 3 u 0, v 0, s 0 [ S(U, V, ) = s 0 + 3 2 log U + log V ] u 0 v 0 0 U 3 = ɛ 4πe 5/3 u 0 v 2/3 3 m 0 = 4πe 5/3 h 2 u 0, v 0 U ɛ

30 3 35 k B T ɛ 36 T 0 3738 Ω(; ) = ɛ 0 Ω( ; ) S = k B log Ω(; ) = k B log Ω( ; ) + k B log ɛ 0 O(log ) Ω S = k B log Ω( ; ) S = k B log Ω(; )ɛ 0 Ω ω Ω( ; ) ω( )) S = k B log ω( U ) 3.7 35 U 36 ɛ 37 T 0 38 u 0, v 0

3.7. 3 3.7. 2 [, + ] 2 [ 2, 2 + 2 ] Ω, Ω 2 Ω ( ; )Ω 2 ( 2 ; 2 ) 2 [, + ]( ) W (, ) = + 2 + d d 2 Ω ( ; )Ω 2 ( 2 ; 2 ) = + d 0 d d 2 Ω ( ; )Ω 2 ( 2 ; 2 )δ( + 2 ) = + d 0 d Ω ( ; )Ω 2 ( ; 2 ) = 0 d Ω ( ; )Ω 2 ( ; 2 ) Ω() = 0 d Ω ( ; )Ω 2 ( ; 2 ),2 Ω ( ; )ɛ () 0 = k B S (, ) Ω 2 ( 2 ; 2 )ɛ (2) 0 = k B S 2 ( 2, 2 ) ɛ () 0, ɛ(2) 0 39 [ ] Ω() = 0 d exp k B (S (, ) + S 2 (, 2 )) ɛ () 0 ɛ(2) 0 (S (, ) + S 2 (, 2 )) = 0 Ω() [ ] [ ] exp k B (S () + S 2 ( )) 0 d exp 2 2k B (S 2 (, ) + S 2 (, 2 ) = )( ) 2 [ ] = exp k B (S () + S 2 ( )) 39 log

32 3 (, ) 40 [ 2 ] d exp 2k B 2 (S (, ) + S 2 (, 2 ) = )( ) 2 πk B = S + S 2 (S, S 2 S ) 4 2 2 S() = k B log Ω() = S ( ) + S 2 ( ) 2 42 (S (, ) + S 2 (, 2 )) = = 0 S = S 2 2 2 40 4 S + S 2 < 0 42