main.dvi

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

2

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

main.dvi


Z: Q: R: C: 3. Green Cauchy


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Untitled

notekiso1_09.dvi


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

IV.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


応力とひずみ.ppt

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

, ( ) 2 (312), 3 (402) Cardano

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Z: Q: R: C:

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II 2 II

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

Microsoft Word - 触ってみよう、Maximaに2.doc

main.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

KENZOU

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

i

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


Microsoft Word - 計算力学2007有限要素法.doc

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2011de.dvi

高等学校学習指導要領

高等学校学習指導要領


ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

( ) x y f(x, y) = ax

DVIOUT

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

untitled

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

70の法則

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

all.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2 2 L 5 2. L L L L k.....

x ( ) x dx = ax

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

L1-a.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Gmech08.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

xyr x y r x y r u u

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

( ) ( )

Transcription:

2 f(z) 0 f(z 0 ) lim z!z 0 z 0 z 0 z z 1z = z 0 z 0 1z z z 0 1z 21

22 2 2 (1642-1727) (1646-1716) (1777-1855) (1789-1857) (1826-1866) 18 19 2.1 2.1.1 12 z w w = f (z) (2.1) f(z) z w = f(z) z z 0 w w 0 " 0 < jz0z 0 j < z jf (z) 0 w 0 j <" (2.2) lim f(z) =w 0 (2.3) z!z 0 w 0 w z! z 0 13 lim z!z0 f (z) =f(z 0 ) " (") jz 0 z 0 j <(") z jf(z) 0 f (z 0 )j <" (2.4) f(z) z = z 0 1

2.1 23 2.1. z w = f(z) ". 2 (x; y) 2 (u; v) f(z) =u(x; y) iv(x; y) x =(z +z)=2, y =(z0z)=(2i) f = u(z; z)+iv(z; z) z jzj z w = f (z) =u(z) +iv(z) w 1 = z 2 w 2 = x 2 + y 2 w 2 = z z = jzj 2 z z jzj 2 1 f(z), g(z) lim z!z0 f(z), lim z!z0 g(z) 1. lim z!z0 (f(z) +g(z)) = lim z!z0 f (z) + lim z!z0 g(z) 2. lim z!z0 cf(z) =c lim z!z0 f(z) 3. lim z!z0 (f(z)g(z)) = lim z!z0 f(z)lim z!z0 g(z) f(z) 4. lim z!z0 g(z) = lim f(z) z!z 0 lim g(z) lim g(z) 6= 0 z!z0 z!z 0 1 2 w = f (z)

24 2 2.2 2.2.1 14 z z = z 0 jz0z 0 j < w = f (z) f (z) 0 f(z 0 ) lim (2.5) z!z 0 z 0 z 0 f(z) z = z 0 f 0 (z 0 ) df z=z0 f 0 (z 0 )= df f (z) 0 f(z 0 ) = lim (2.6) z=z0 z!z0 z 0 z 0 z z 0 3 1f f(z +1z) 0 f(z) =f 0 (z)1z + 1z ;! 0(1z! 0) : (2.7) 15 D D regular, holomorphic) f(z) z 0 z 0 z 0 f(z) f(z) z = z 0 z 0 10 z n 2 (z +1z) n = z n + nz n01 1z + 1 2 n(n 0 1)zn02 (1z) 2 111 3

2.2 25 n = lim (z +1z) n 0 z n 1z!0 1z = nz n01 11 z 1=n (z +1z) 1=n = a, z 1=n = b 1=n (z +1z) 1=n 0 z 1=n = 1z = a 0 b a n 0 b n a 0 b (a 0 b)(a n01 + a n02 b + a n03 b 2 + 111ab n02 + b n01 ) = lim a!b 1 a n01 + a n02 b + a n03 b 2 + 111ab n02 + b n01 = 1 n z(1=n)01 z 1=n z =0 2 1. 2. 3. 4. d d d fcf (z)g = cdf(z) ff(z) +g(z)g = df (z) ff(z)g(z)g = df (z) d f (z) g(z) = df(z) + dg(z) dg(z) g(z) +f(z) g(z) 0 f(z) dg(z) g 2 (z) 5. g(z) z = z 0 f(w) w = w 0 = g(z 0 ) f (g(z)) z = z 0 df(g(z 0 )) = df (w(z 0)) dg(z 0 ) dw (2.8)

26 2 2.2 w = z 1=3. f (g(z)) g 1g f 1f 1f = f 0 (g)1g + 1g 1g = g 0 (z)1z + 0 1z 1g! 0! 0 1z! 0 0! 0 1f 1z =(f 0 (g) +)(g 0 (z) + 0 )=f 0 (g)g 0 (z) + f 0 (g) 0 + g 0 (z) + 0 1z! 0 0 (2.8) 3 z m=n n, m n 6= m m=n = m n z(m=n)01 (2.9) (2.9), f(w) =w m, g(z) =z 1=n z = e i 0 2 z m=n =0 =2

2.2 27 2.2) z m=n z 1 z =0 z = z 1 z m=n 1 z 1 z 2 z m=n 2 z 1 z 2 z =0 z z m=n z m=n z =0 4 2.2.2 z! z 0 1 13 f = u +iv z = z 0 x y f (z) =u +iv @u @x = @v @y @u @y = 0 @v @x (2.10) Cauchy-Riemann z! z 0 z+1z z 1z =1x+i1y 4 z m=n

28 2 (1) 1x! 0; 1y =0 (2) 1x =0; 1y! 0 (1) f 0 +1x; y) 0 u(x; y) v(x +1x; y) 0 v(x; y) (z) = lim fu(x +i g 1x!0 1x 1x = @u @x +i@v @x (2) f 0 y +1y) 0 u(x; y) v(x; y +1y) 0 v(x; y) (z) = lim fu(x; +i g 1y!0 i1y i1y = 0i @u @y + @v (2.11) @y @u @x = @v @y @u @y = 0 @v @x u x ; u y ; v x ; v y (2.10) q u = u 0 + a1x + b1y + " (1x) 2 +(1y) 2 v = v 0 0 b1x + a1y + " 0q (1x) 2 +(1y) 2 ", " 0 j1zj!0 f = u +iv f = f 0 +(a 0 ib)1z + " 00q (1x) 2 +(1y) 2 j1zj!0 " 00! 0 f 0 = a 0 ib

2.2 29 f = u +iv u, v ( ) 5 12 f(z) =z 2 u(x; y) = x 2 0 y 2, v(x; y) =2xy u; v 7 7.2 u v x, y v(x; y) @ 2 u @x 2 = @2 v @x@y @ 2 u @y 2 = 0 @ 2 v @x@y 2 u @ 2 u @x 2 + @ =0 (2.12) @y2 2 v @ 2 v @x 2 + @ =0 (2.13) @y2 2 u v 2 5 u(x; y) (x; y) 1u u(x +1x; y +1y) 0 u(x; ) =a1x + b1y + " p (1x) 2 +(1y) 2 a,b 1x, 1y (1x) 2 +(1y) 2! 0 "! 0

30 2 16 2 2 u @ 2 u @x 2 + @ =0 (2.14) @y2 1 u(x; y) f(z) =u + iv v(x; y) u, v 13 f(z) =u +iv u(x; y) =x 2 0 y 2 @ 2 1u = @x 2 + @ 2 @y 2 u =202=0 u u v @v @x = 0@u @y =2y @v @y = @u @x =2x v(x; y) = = Z x dx(2y) =2xy + (y) Z y dy(2x) =2xy + (x) (y) = (x) = f(z) =(x 2 0 y 2 )+i2xy = z 2 14 f(z) z = z 0 f 0 (z 0 ) 6= 0 z = z 0 w = f(z) z = g(w) df =1= dg dw (2.15)

2.2 31 ( 2 1 2 2 x, y f = u +iv u = u(x; y) v = v(x; y) (2.16) ( D(u; v) D(x; y) = @u @x @v @x @u @y @v @y = J (2.17) (J 6= 0) x = x(u; v) y = y(u; v) (2.18) @u @u J = @x @y = u xv y 0 u y v x = u 2 x + v2 x = jf 0 (z)j 2 @v @x @v @y f 0 (z) 6= 0 1 2 f (z) g(w) w = f(g(w)) 1= dw dw = df ( ) dg dw (2.19) 2.2.3 u v 2

32 2 14 (r) ( @2 @x 2 + @ 2 @y 2 + @ 2 )(r) =0 @z2 r q F grad F (r) =0qgrad(r) =0q( @ @x ; @ @y ; @ @z )(r) E E(r) =0grad(r) =0( @ @x ; @ @y ; @ @z )(r) (r) = (r) z 2 (r) E(r) ( @2 @x 2 + @ 2 )(r) =0 @y2 E(r) =0grad(r) =0( @ @x ; @ @y )(r) (x; y) 2 (x; y) @ (x; y) = @ @x @y (x; y); @ @ (x; y) =0 @y @x (x; y) = =

2.2 33 15 v(r)!(r) = rotv! =0 rotv =0 v v = grad8 8 8 t @ + div(v) =0 @t = const divv =0) div grad8 = ( @2 @x 2 + @ 2 @y 2 + @ 2 @z 2 )8 = 0 8 v x, y z 2 v 8 2 ( @2 @x 2 + @ 2 @y 2 )8 = 0 v x = @8 @x ; v y = @8 @y 2.3 1 A P C A P 90 v v n A P C Z P 9(P) = v n ds A C P A P 2 C C 0 C C 0 9(x; y) 9 = 0 9 v n = @9=@s 90

34 2 2.3. x, y 0y,x 0v y, v x v x = @9 @y ; v y = 0 @9 @x 8 9 f =8+i9 z = x +iy 8 9 f 2.3 2.3.1 D w = f(z) D 3 z i, (i = 0; 1; 2) z 0 z i (i =1; 2) f w 0 w i (i =1; 2) z w z 0 w 0 z 1 0 z 0 = r 1 e i 1; z 2 0 z 0 = r 2 e i 2 w 1 0 w 0 = 1 e i 1; w 2 0 w 0 = 2 e i 2 (2.20)

2.3 35 2.4 3 zi, (i =0; 1; 2) w = f (z) wi (i =0; 1; 2) w = f (z) f 0 (z 0 )= w 1 0 w 0 w 2 0 w 0 lim = lim z 1!z 0 z 1 0 z 0 z 2!z 0 z 2 0 z 0 f 0 (z 0 )=lim 1 r 1 e i( 10 1 ) = lim 2 r 2 e i( 20 2 ) (2.21) 1 r 1 e i(101) = f 0 (z 0 )+ 1 2 r 2 e i( 20 2 ) = f 0 (z0 )+ 2 (2.22) 1, 2 z! z 0 r 1, r 2, 1, 2 0 z! z 0 lim 2 1 = lim r 2 r 1 ; lim( 2 0 1 ) = lim( 2 0 1 ) z 0 3 1z 0 z 1 z 2 w 0 3 1w 0 w 1 w 2 1z 0 z 1 z 2 1w 0 w 1 w 2 (2.23) 2.21 jf 0 (z 0 )j argf 0 (z 0 ) 1 0 1 f(z)

36 2 2.5 w = 1 z. f (z) (conformal) f(z) 17 D w = f (z) z 0 2 w 0 2 w = f (z) z 0 15 f(z) z 0 f 0 (z 0 ) 6= 0 w = f(z) z 0 f 0 (z 0 )=0 w = f(z) z = z 0 16 w = 1 z z = re i w =(1=r)e 0i z =0 w =0 z =0 w =0 z w z =0 2.5

2.3 37 2.6 w = z 2. 17 w = z 2 z y =0;x> 0 v =0;u > 0 z x =0;y >0 u =0;v < 0 z 1 w f 0 (0) = 0 z =0 u = x 2 0 y 2 ; v =2xy z x = a ) u = a 2 0 ( v 2a )2 y = b ) u =( v 2b )2 0 b 2 2 ( 2.6 2.3.2 2 I w = u(x; y) + iv(x; y) u = u(x; y) ; v = v(x; y) (2.24)

38 2 (x; y) @ 2 @x 2 + @ 2 n @u 2+ @u 2 o @ 2 @y 2 = @x @y @u 2 + @ 2 @v 2 (2.25) @u 2+ @u 2= jw 0 (z)j 2 @x @y (2.25) (x; y) (u; v) @ 2 @x 2 + @ 2 @y 2 f (x; y) =0, @ 2 @u 2 + @ 2 @v 2 f (x(u; v);y(u; v))=0: (2.26) 2 f =8+i9 z = z(w) w = w(z) z w f(z(w)) = 8 + i9 w w 8,9 u; v (w = u +iv w = u +iv 8(u; v), 9(u; v) z w 9 = 2 a ( C I I I(C) = v 1 ds = v s ds (2.27) C C

2.3 39 2.7. 2.8. 6 w = z + a2 z (2.28) z = ae i w =2acos z a w 4a 2.7 w 6 f = U(z + a 2 =z) + i(0=2)logz 3 3.4

40 2 f = Uw (2.29) w = u +iv 8(u; v) =Uu,9(u; v) =Uv u U v 0 v = f z f = U(z + a2 z ) (2.30) z!1 f! Uz z = ae i f = 2Uacos (2.31) 8=2U cos ; 9=0 (2.32) ( v =( 1 @8 r @ ) = 02U sin (2.33) r=a 2.8 w f = U(e 0i w + a2 e i w ) (2.34) z 2a z = w + a2 w z 2 f(z) =Az n (2.35)

2.3 41 2.9 =n. z = re i f 8=Ar n cos n; 9=Ar n sin n (2.36) 9 =0 = m=n (n =0; 1; 2; 111) m=n 2.9

42 2 2.4 2 1. 21. 4. 2. u(x; y) u (1)u = x 3 0 3xy 2 (2)u = 1 2 ln(x2 + y 2 ) (3)u =e x cos y 3. w(z) z = re i ;w(z) =Re i2 @R @r = R r @2 @ ; @R @ = 0rR@2 @r 4. w =1=z z x = a y = b w 5. w = z + a 2 =z = (z = re i ) 6. = z + b 2 =z r = (z = re i ) 7. w = z +e z z 0 Imz w Imz = 6 Imw = 6; Rew 01