add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

Similar documents
I: 2 : 3 +

…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

A

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

PowerPoint Presentation


A_chapter3.dvi

lecture

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


推薦数学.indd

v er.1/ c /(21)

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

newmain.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

II

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

xy n n n- n n n n n xn n n nn n O n n n n n n n n

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

研修コーナー

tnbp59-21_Web:P2/ky132379509610002944

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

パーキンソン病治療ガイドライン2002

日本内科学会雑誌第97巻第7号

29

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

2011de.dvi


日本内科学会雑誌第98巻第4号

73

日本内科学会雑誌第96巻第7号

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

/02/18

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

i

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


untitled

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

1.1 1 A

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

) Binary Cubic Forms / 25

DVIOUT

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

snkp-14-2/ky347084220200019175

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

untitled


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

情報理論 第5回 情報量とエントロピー

数理.indd

, = = 7 6 = 42, =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

1


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

i 18 2H 2 + O 2 2H 2 + ( ) 3K

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

JSP58-program



untitled

『共形場理論』

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Transcription:

output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x 2 2 + 1 2 λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 x + y(3, 4 = (λx.(λy.2 x + y(3(4 2

( = 2 3 + 4 ( = (λy.2 3 + y(4 = 2 3 + 4 (λ(x, y.2 x + y(3, 4 = (λx.(λy.2 x + y(3(4 2 1 Currying 2.7 EXERCISE 2.1 f, g f = λ(x, y, z.x + y + z g = λx.(λy.(λz.x + y + z f(1, 2, 3 = g(1(2(3 f(1, 2, 3 = (λ(x, y, z.x + y + z(1, 2, 3 = 1 + 2 + 3 3

g(1(2(3 = (λx.(λy.(λz.x + y + z(1(2(3 = (λy.(λz.1 + y + z(2(3 = (λz.1 + 2 + z(3 = 1 + 2 + 3 f(1, 2, 3 = g(1(2(3 4

2.2 λ β DEF. λ λ - term λ 1. v, v,... λ 2. M, N λ (MN λ 3. M λ x (λx.m λ (2 (3 λ NOTATION 2 λ M, N M N EXERCISE 2.2.1 λ subterm λ M M (λv.(v(λv.v v, (λv.v, v, (v(λv.v, (λv.(v(λv.v λ DEF. λ λ M 1. M M 2. M 1, M 2 (M M 1 M 2 M 1, M 2 M 3. M 1, x(m λx.m 1 M 1 M 5

NOTATION M, M 1,..., M n λ x 1,..., x n 1. ((...((M 1 M 2 M 3...M n M 1...M n 2. (λx 1.(...(λx n.m... λx 1...x n.m EXAMPLE λxyz.xz(yz (λx.(λy.(λz.((xz(yz DEF. x λ M def x M λx. x x λ M def x M λx. x DEF. λ M F V (M M 1, M 2 λ x 1. x(m x F V (M = {x} 2. M 1, M 2 (M M 1 M 2 F V (M = F V (M 1 F V (M 2 3. M 1, x(m λx.m 1 F V (M = F V (M 1 {x} 6

EXAMPLE λx.y(λy.xy y x y DEF. λ closed λ - term combinator λ M λ def M ( F V (M = β DEF. λ M x λ N λ M[x := N] M 1, M 2 λ z 1. z(m z M[x := N] { N if z x z otherwise 2. M 1, M 2 (M M 1 M 2 M[x := N] M 1 [x := N]M 2 [x := N] 3. z, M 1 (M λz.m 1 λz.m 1 if { z x M[x := N] λz.m 1 [x := N] if z / F V (N or x / F V (M 1 otherwise, λz.m 1 [z := z ][x := N] otherwise z / F V (N F V (M 1 7

DEF. α α - conversion x M λ λx.m x x α λx.m λy.m[x := x ] AX. x, x, λ M λx.m λx.m[x := x ] β (λx.mn = M[x := N] β DEF. β λ λ M, N M = N λ M, N, L λ x (β (ξ (λx.mn = M[x := N] M = N λx.m = λx.n M = N ML = NL M = N LM = LN M = M L = M M = N L = N M = N N = M M = N λ λ M = N M = N 8

DEF. β β - convertibility λ M, N β β- convertible def M = N EXAMPLE (λxy.xy(λz.z = λy.(λz.zy (λxy.xy(λz.zy = λv.(λz.zyv (λxy.xy(λz.z = (λx.(λy.xy(λz.z = (λy.xy[x := λz.z] = λy.xy[x := λz.z] = λy.x[x := λz.z]y[x := λz.z] = λy.(λz.zy (λxy.xy(λz.zy = (λx.(λy.xy(λz.zy = (λy.xy[x := λz.zy] = λv.xy[y := v][x := λz.zy] = λv.(x[y := v]y[y := v][x := λz.zy] = λv.xv[x := λz.zy] = λv.x[x := λz.zy]v[x := λz.zy] = λv.(λz.zyv EXAMPLE (λxy.x(λx.x(λx.x = λx.x (λxy.(λz.zyx(λx.x = λy.y 9

( (λxy.x(λx.x(λx.x = (λxy.x(λx.x (λx.x ( = (λx.(λy.x(λx.x (λx.x ( = λy.x[x := λx.x] (λx.x = (λx.x(λx.x = x[x := λx.x] = λx.x ( (λxy.(λz.zyx(λx.x = λx.(λy.(λz.zyx (λx.x ( = λy.(λz.zyx [x := λx.x] ( = λy. (λz.zy(λx.x = λy.(zy[z := λx.x] = λy.(λx.xy = λy.x[x := y] = λy.y EXERCISE 2.2.2 λ M x 1,..., x n λ N 1,..., N n λ M[x 1,..., x n := N 1,..., N n ] M[x 1,..., x n := N 1,..., N n ] 10

DEF. λ M x 1,..., x n λ N 1,..., N n λ M[x 1,..., x n := N 1,..., N n ] M 1, M 2 λ z [x 1,..., x n := N 1,..., N n ] [x 1,..., x i 1, x i+1,..., x n := N 1,..., N i 1, N i+1,..., N n ] i 1. z(m z { M N i if 1 i n & z x i z otherwise 2. M 1, M 2 (M M 1 M 2 M M 1 M 2 3. z, M 1 (M λz.m 1 λz.m i 1 { if 1 i n & z x i M λz.m1 if z / 1 i n otherwise, F V (N or x 1,..., x n / F V (M 1 λz.m 1 [z := z ] otherwise z / 1 i n F V (N F V (M 1 DEF. [x 1,..., x n := N 1,..., N n ] n 1. n = 1 M n M[x 1 := N 1 ] 2. n k n n M (n+1 M[x 1,..., x n := N 1 [x n+1 := x n+1],..., N n [x n+1 := x n+1]] [x n+1 := N n+1 ] [x n+1 := x n+1 ] 11