44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

Similar documents
一般演題(ポスター)

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{


110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

dプログラム_1

tnbp59-17_Web:プO1/ky079888509610003201

日本糖尿病学会誌第58巻第1号

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

第86回日本感染症学会総会学術集会後抄録(II)

無制約最適化問題に対する新しい3 項共役勾配法について Title( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 成島, 康史 ; 矢部, 博 Citation 数理解析研究所講究録 (2008), 1614: Issue Date

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

日本糖尿病学会誌第58巻第3号

基礎数学I

第85 回日本感染症学会総会学術集会後抄録(I)

日本糖尿病学会誌第58巻第2号

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

1 1 Emmons (1) 2 (2) 102

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

330

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

第89回日本感染症学会学術講演会後抄録(I)

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

超幾何的黒写像

2301/1     目次・広告

日本内科学会雑誌第98巻第3号

プリント

2011年10月 179号 新レイアウト/001     4C

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

yakuri06023‡Ì…R…s†[

確率論と統計学の資料

189 2 $\mathrm{p}\mathrm{a}$ (perturbation analysis ) PA (Ho&Cao [5] ) 1 FD 1 ( ) / PA $\mathrm{p}\mathrm{a}$ $\mathrm{p}\mathrm{a}$ (infinite

パーキンソン病治療ガイドライン2002

本文27/A(CD-ROM

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

tnbp59-20_Web:P1/ky108679509610002943

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL


(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav

ron04-02/ky768450316800035946



jigp60-★WEB用★/ky494773452500058730

プログラム

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)


9 1: $O$,,, ( ), BT $2W6$ 22,, BT [7] BT, 12, $\xi_{1}=$ $(x_{11}, x_{12}, \ldots,x_{112}),$ $\xi_{2}=(x_{21}, x_{22}, \ldots, x_{212})$ $i$ $

チュートリアル:ノンパラメトリックベイズ

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Microsoft Word - ■3中表紙(2006版).doc

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

FS_handbook.indd


Microsoft Word - 第56回日本脂質生化学会プログラムv1.doc

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty


$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

日本糖尿病学会誌第58巻第7号

受賞講演要旨2012cs3

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

第88回日本感染症学会学術講演会後抄録(III)


$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

第3章 非線形計画法の基礎

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

ボールねじ

Ł\”ƒ-2005

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

福岡大学人文論叢47-3

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

本文/020:デジタルデータ P78‐97

SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $


105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

SOWC04....

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

日本分子第4巻2号_10ポスター発表.indd

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_

24.15章.微分方程式

b3e2003.dvi


$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

Microsoft Word - 第58回日本脂質生化学会プログラムv1.doc

Transcription:

Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$ (C-FA ) $\text{ }$ (Mountain Crossing Algorithm) 3 1. 2. 3. ( ) 1 ( )... 2 C-FA C-FA 3 4 5 2 2.1 $f(x)$ $x^{k1}=+kkx^{k}+\alpha d$ (1) 263 1-33 TEL,FAX:043-290-3505

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle $H^{k}$ H^{k}$ $k$ Illk \alpha k $=1$ Wolfe \alpha k [1] $f(x^{k}+\alpha^{k}d^{k})-f(x^{k})\leq\sigma_{1}\alpha^{k}(\nabla f(x)k)\mathrm{t}dk$ (3) $(\nabla f(x+k\alpha d^{k}k))\mathrm{t}dk\geq\sigma_{2}(\nabla f(xk)).\mathrm{t}dk$ (4) \mbox{\boldmath $\sigma$}1 $\sigma_{2}$ O $<\sigma_{1}<\sigma_{2}<1$ 22 (Constant approximated Hessian method) (1) (2) 221 \nabla f $\nabla f(x^{k})$ $\nabla f_{\text{ }}H^{k}\text{ }\alpha^{k}$ $( \frac{\partial f}{\partial x})^{k}\simeq\{$ $\frac{f(_{x+\delta_{x},y}kk)-f(xky^{k})}{\delta, x}$ when $x^{k}\geq x^{k-1}$ $f(x^{k}, y^{k})-f(x^{kk}-\delta X, y)$ $\overline{\triangle x}$ when $x^{k}<x^{k-1}$ $(0)\ulcorner$ $( \frac{\partial f}{\partial y})^{k}\simeq\{$ $\frac{f(x^{k},y^{kk}+\delta y)-f(x,y^{k})}{\triangle y}$ when $y^{k}\geq y^{k-1}$ $\frac{f(x^{k},y^{k})-f(x^{k},y^{k}-\delta y)}{\triangle y}$ when $y^{k}<y^{k-1}$ (6) \Delta x $=\triangle y=10^{-4}$ 222 Hesse (3) $If^{k}$ $If_{C}$ $H^{k}$ $H_{C}$ $=$ C $f(x)$ Hessian $C$ 223 \alpha k Wolfe (2) (7) $\text{ }d^{k}c$ [1] \alpha k \mbox{\boldmath $\sigma$}1 $=10^{-4}\text{ }\sigma_{2}=0.9$

$\frac{x-a_{1}}{\frac{a-a_{3}^{2}-a_{1}x}{a_{3}-a_{2}}}$ 45 2.3 C-FA C-FA $(\mathrm{c}+$ $\{d_{c}^{k}\}$ Fuzzy Average method) 2.3.1 $a_{i}\in R(i=1,2,3),$ $a_{1}<a_{2}<a_{3}$ \mu A (X) $\mathit{1}^{4}a(x)=\{$ when when $0$ otherwise $a_{1}\leq x\leq a_{2}$ $a_{2}\leq x\leq a_{3}$ (8) \mu A $(x)$ Triangular Fuzzy $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}$) $A$ $A=(a_{1}, a_{2}, a_{3})$ $a_{2}$ $A$ (mean value) ( 1) $a_{2}-a_{1}=a_{3}-a_{2\text{ }}$ 232 N $a<b,$ $a,$ $b\in R$ $[a, b]$ $N-1$ $(N\geq 3),$ $(a=a_{1}<a_{2}<..\cdot$. $<a_{n-1}<a_{n}=b)$ $N$ $A_{i}=(a_{i-1,i,i+1}aa)(1\leq i\leq N)$. $a_{0}=a- \frac{b-a}{n-1},$ $a_{n+1}=b+ \frac{b-a}{n-1}$ ( 2) $[a, b]$ N 13 2 $\mathrm{n}$

46 2.3.3 $x=(x_{1}, x_{2})\in R^{\mathit{2}}$ $x$ (weight function) $w_{ij}$. $w_{ij}(_{x_{1\mathit{2}}}, X)= \frac{\min\{\mu_{ai}(x1),\mu_{a}j(_{x_{2}}\}}{n}$ (9) $\sum_{i,j=1}\min\{\mu_{a}i(x_{1}), \mu Aj(X2)\}$ $0\leq w_{ij(}x_{1,\mathit{2}}x)\leq 1$ (10) $\sum\sum w_{ij}(x\iota, x_{\mathit{2}})=nn1$ $i=1j=1$ $w_{ij}(x_{1}, x_{\mathit{2}})$ $a_{\mathit{2}}^{j}$ $A_{j}$ x2 $w_{ij}$ $A_{i}$ $a_{2}^{i}$ $x\mathrm{l}$ (11) 2.3.4 xl, x2 $\triangle\theta^{k}$ $\Delta\theta^{k-1}$ $=$ $\theta_{c}^{k}-\theta k-1$ $=$ $\theta^{k-1}-\theta^{k}-\mathit{2}$ (12) $\Delta^{2}\theta^{k}$ $=$ $\Delta\theta^{k}-\Delta\theta^{k-}\iota$ $\theta_{c}^{k},$ $\theta^{k}-1,$ $\theta^{k-\mathit{2}}$ $d_{c}^{k},$ $d^{k-1},$ $d^{k-\mathit{2}}$ $x$ k $d^{k-1},$ 1 $d^{k-\mathit{2}}$ $\Delta\theta^{k},$ 2 $\triangle\theta^{k-1}$ $\Delta^{2}\theta^{k}$ $ \Delta\theta^{k}$I$\Delta^{2}\theta^{k} $ 0 $\leq\delta\theta^{k}\leq\pi,$ $0\leq\Delta^{2}\theta^{k}\leq\pi$ $A_{i},$ N 2N $A_{j}$ \mu Ai, \mu $d_{c}^{k}$ 2.3.5 $I_{1}$ $I_{1}$ x,, N $A_{i}=(a_{i1}, a_{i\mathit{2}}, a_{i3}),$ $I_{2}$ $\{a_{i2}^{k}\}_{k=1}^{n},$ $\{a_{j\mathit{2}}^{k}\}_{k=1}^{n}$ $A_{j}=(a_{j1}, a_{j\mathit{2}}, a_{j3})$ $a_{i\mathit{2}},$ $a_{j\mathit{2}}$ $A_{i},$ $x_{1}$ $x_{2}$ $\Lambda,\text{ }$ $a_{i2}^{\iota\iota},$ $M_{ij}$ \tau (Fuzzy Correlation Matrix). M $I_{\mathit{2}}$ $a_{j}^{n}2(l, m=1,2, \ldots, N)$ $M_{ij}= \frac{\max\{i,j\}-1}{2(n-1)}$ (13) 2.3.6 $w_{ij}$ $M_{ij}$ \beta N $\beta^{n}$ $=$ $\sum_{i,j=1}^{n}w_{i}jmij$ (14) $N$

47 2.3.7 $\{d^{k}\}$ \beta N $d^{k}$ $=$ $\beta^{n}d^{k-1}+(1-\beta)d_{c}^{k}$ (15) $\Delta^{2}\theta^{k}$ (13) \Delta \theta k, $\triangle^{2}\theta^{k}$ $\triangle\theta^{k},$ dck /J\ 1 1. 2. Wolfe \alpha k 2.4 C-FA 2 $z$ $=$ $f(x, y)$, $(x, y)\in O$, $D=(0,1)\cross(0,1)$ $f(x, y)$ $=$ $\frac{-1}{1_{0}^{\ulcorner}0}(\frac{1}{0.01+(l3_{x}2-\mathrm{h}_{\frac{-0.2}{3}-\mathrm{o}.3})^{\mathit{2}}}+\frac{1}{0.02+(\frac{x}{2}+\not\subset_{3}3(y-0.2)-\mathrm{o}.4)^{\mathit{2}}}\mathrm{i}$ (16) 3 3

48 2.5 $V$ $V=\{x X0=x, x^{k}-x^{\min} <\epsilon_{1}, x^{k}-x-1 k <\epsilon_{2}, k<k_{\max}\}$ (17) $(k=0,1,2, \cdots)$ $x^{\min}$ $f(x)$ x $\text{ }x^{k}$, $\epsilon_{1},$ $\epsilon_{2}$ $V$ x0 $\epsilon_{1}=\epsilon_{2}=10-3,$ $k_{\max}=500$.. 1 $L$ $L=L(x),$ $x\in V$ (18) $\dot{l}(x)$ $V$ $x^{mi\iota} $ x $\sum$ $L(ml\iota,nh)$ $(mh,nh)\in V$ $L_{ave}=$ (19) $(m \prime_{l},nh\sum_{)\in V}1$ $m,$ $n=1,2,$ $\cdots,$ $39,$ $h=0.025$, 26 $H^{k}$ $f(x$, BFGS [1] $4\mathrm{d}$ $4\mathrm{a}$ $L(x, y)=$ $L(mh,nh),$ $(m, n=1,2, \cdots, 39)$ $L(x, y)$ ( $4\mathrm{a}^{)}$ ( $4\mathrm{b}$) $\gamma$ ( $4\mathrm{c}$). C-FA ( $4\mathrm{d}$) $5_{\text{ }}6$ C-FA dk 5 C-FA 6 C-FA $N$ 3 C-FA $N$

49 (a) (b) (c) C (d) C-FA 4

50 5 6

) 51 1 $L_{ave}$ $ W $ $39\cross 39=1521$ $847o0$ $\ovalbox{\tt\small REJECT}_{119}\text{ ^{}-\text{ }}--\text{ }-\vdash--\text{ }\grave{\prime}381447/\mathrm{c}-\mathrm{f}\mathrm{c}\mathrm{a}\grave{\prime}1101$ $2110_{1}2$ $11_{0}$ $\mathrm{o}//1^{r}\mathit{0}23/102$ $1$ 1 (BFGS ) C-FA 3 (Mountain Crossing Algorithm) C-FA ( ) (Genetic $\mathrm{a}_{\mathrm{o}\mathrm{r}\mathrm{i}}\mathrm{t}\mathrm{h}\mathrm{m}$ $\text{ }$ (Simulated Annealing) (Mountain Crossing Algorithm) $\mathrm{u}\mathrm{p}$ Down-hill.. hill 1. C-FA (Down-hill) 2. 1 (Up-hill) 3. 2 C-FA 4. $2_{\text{ }}3$ ( REVISIT ) 5. REVISIT 6. 4 4.1 7

52 4.2 1. $P_{in}$ : 2. $V_{fi}\iota_{m}$ : $J_{h}(P_{i}n Vfi\iota m)$ $J \prime_{l}(pi?\iota V\int i\iota 7n)=\frac{1}{V_{f^{i\iota_{7}\iota}}\prime}+\frac{1}{\epsilon_{r}}\int_{x_{0}}^{x_{1}}\int_{y_{0}}^{y_{1}}(\eta(X, y)-\eta ave)2d_{x}d\gamma/+\frac{1}{\epsilon_{l\iota}} \eta_{a}ve-fl $ $\eta=\eta(x, y)$ $(x0, x_{1})\cross(y_{0,y)}1$ $\eta_{ave}$ $(x_{0}, x1)\cross$ $\epsilon_{r}$ $(y_{0}, y_{1})$, \epsilon $J_{l_{l}}(P_{ir}\iota $ Vfilm $(P_{i,\iota}, V_{\int\iota m}i)$ h $\eta(x$, C-FA 43 (Fictitious domain method via singular perturbation) $[4,5]$ Navier-Stokes MAC Poisson

$. \frac{\underline{\underline{\in}}}{>}$ 53 44 8 $J\prime_{l}(P_{i \iota f}vi\iota m)$ C-FA,, $(P_{i\tau\iota}, V_{film})$ $J_{h}$ O $\triangle$ C-FA (Down-hill) 1 $( \mathrm{u}\mathrm{p}\frac{-}{}\mathrm{h}\mathrm{i}\mathrm{l}1)$ 8

$\bullet$ 54 5 1. C-FA.... ( 5)... ( 6) $ x^{k}-x^{k}-1 <10^{-3}$ C-FA 2. C-FA 6 1.,,,,, 1994. 2.,,,, 1979. 3.,,,1994. 4. Kawarada, H., Application of Ficititious Domain Method to Ree Boundary Problems, Indo-French Conf. on Mathematical Methods for Partial Differential Equations, 1994. 5. Fujita, H., Kawahara, H. and Kawarada, H., Distribution Theoretic Approach to Fictitious Domain Method for Neumann Problems, East-West J. Numer. Math., Vol.3, No. 2, pp.111-126, 1995.