6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Similar documents
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

( ) ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


LLG-R8.Nisus.pdf

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

構造と連続体の力学基礎

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

30

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

The Physics of Atmospheres CAPTER :

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


Part () () Γ Part ,

pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Note.tex 2008/09/19( )

meiji_resume_1.PDF

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

master.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


TOP URL 1

4‐E ) キュリー温度を利用した消磁:熱消磁


main.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

総研大恒星進化概要.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

( )

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

IA

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

201711grade1ouyou.pdf

KENZOU

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

,,..,. 1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

untitled

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Microsoft Word - 11問題表紙(選択).docx

I ( ) 2019

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)


Untitled

1 2 2 (Dielecrics) Maxwell ( ) D H

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


untitled

Mott散乱によるParity対称性の破れを検証

TOP URL 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I 1

genron-3

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

03J_sources.key

QMII_10.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

PDF


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

all.dvi


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

ohpr.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

中央大学セミナー.ppt

2011de.dvi

chap9.dvi

30 (11/04 )

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

: , 2.0, 3.0, 2.0, (%) ( 2.

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A

36 th IChO : - 3 ( ) , G O O D L U C K final 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Transcription:

1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a T + AT 4 3 = (nt + 13 ) AT 4 da 3 (6.5a) π 2 A = g 30 (nma 3 = ) : (84b) (6.5b) dt T = 1 + B da 1 2 + B a, B 4AT 3 3n (6.6) T a 1 n a 3 B a B(a) = B(a 0 ) B(a 0 ) = 4AT 0 3 = 4 π 2 g 3n 0 3n B 30 T 0 3 = π4 45ζ(3) g n γ 10 10 (6.7) n B (6.6) dt T + da a = 0 T 1 a (6.8)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 Gρ 3c2 a 2, ρ = ρ m + ρ r + ρ Λ (6.11) ρ Λ >> ρ m,ρ r (k=0) ρ m 1/a 3 H = ȧ/a (6.11) da dt = A a a t 2/3 (6.12) a t 1/2 a e H Λt, H Λ = 8πG Λ 3 ρ Λ = 3 a H = ȧ/a a t 2/3 H = 2 1 3 t a t 1/2 H = 1 1 2 t a e H Λt H = H Λ (6.13) (6.14a) (6.14b) (6.14c) H 1 6.2 ( ) ( ) r a(t) ds 2 = 0 Z r Z dr t d H (t) = a(t) = a(t) cdt 0 1 kr 2 0 a(t ) = 2ct = ch 1 3ct = 2H 1 (6.15)

6 3 6.3 (6.11) ρ m a 3,ρ a 4,ρ Λ, (k ) a 2 (79) π 2 ( ρ r = g 30 T 4, g = g B + 7 ) B,F 8 g *1) F (6.16) (6.11) 4π H(t) = αt 2 3, α = 45 g G 1.66g1/2 (6.18) M Pl M Pl = G 1/2 = 1.22 10 19 GeV g B, g B T ( (84c) ) H = 1/2t t 1s(T 1MeV ) g = 3.36 [ ] 90 1/4 T = g 32π 3 t 1/2 1.33 1010 K G (t/sec) 1/2 1.15 MeV (t/sec) 1/2 (T 1MeV ) (6.19) T = 1MeV t(s) = 1010 K t(s) (6.20) 6.4 6.4.1 T 1MeV ( ) *2) ν + e ν + e (6.21a) ν + ν e + e + γ + γ (6.21b) ν e + n e + p (6.21c) ν e + p e + + n (6.21d) * 1) T >> 2m k k T >> 2m e 1MeV T << 1MeV g γ = 2 g = 2 + 7 8 2 3 ( 4 11 ) 4/3 = 3.36 T << 1MeV (6.17) * 2) η 6 10 10

6 4 ν = ν e,ν µ,ν τ Γ ν = n ν σ ν v ν H ( ) σ ν G 2 F T 2 3 ζ(3) n ν = g ν 4 π 2 T 3 T 3, v ν = 1 (6.22) Γ ν G 2 FTD 5 = H = αtd 2 1.66g1/2 TD 2 (6.23) M Pl T D T D 1MeV T D 0.72 MeV *3) 6.4.2 T 0.72MeV T m e /3 0.17MeV S = sv = V (ρ + P)/T P = ρ/3 4 V 3 T (ρ e + ρ e + + ρ γ) = 4 V be f ore 3 T ρ γ (6.24) a ft ρ e + ρ e + = 2 (7/8) ρ γ, ρ γ T 3 ( ) 11 4 1/3 4 (T be f ore) 3 = (T a ft ) 3 T be f ore = T a ft = 0.714T a ft (6.25) 11 T ν 1/a *4) T ν = T γ T ν = (4/11) 1/3 T γ T ν,0 = 0.714T γ,0 1.92K (6.26) (78) n ν = 110/flavor/cm 3 n ν = 330/cm 3 (6.27) * 3) [?]D.N.Schramm amd M.S.Turner: ReV. Mod. Phys.,70 (1998) 303 * 4) T T 1/a

6 5 6.4.3 - t eq t 0 / ρ m /ρ rad a ρ(t eq ) = ρ rad (t eq ) ρ m (t 0 )a 3 (t 0 ) = ρ m (t eq )a 3 (t eq ) (6.28) ρ rad (t 0 )a 4 (t 0 ) = ρ rad (t eq )a 4 (t eq ) (6.29) 1 + z eq = a 0 a(t eq ) = ρ m(t 0 ) ρ rad (t 0 ) = ρ m(t 0 ) = ρ cω m0 = Ω m0h 2 = 3250 (6.30) ρ γ,0 + ρ ν,0 ρ c Ω rad,0 4.14 10 5 ρ γ0 = π2 15 T 0 4 = 2.00 10 15 ev 4 = 0.2603 ev /cm 3 T =2.725 K (6.31a) ρ rad,0 = ρ γ0 + ρ ν0 = g 2 ρ γ0 = 1.68ρ γ0 = 0.4373eV /cm 3 (6.31b) Ω rad,0 = ρ rad,0 0.4373 ev /cm 3 = ρ c 1.0537 10 5 h 2 ev /cm 3 = 4.15 10 5 h 2 (6.31c) Ω m0 h 2 = 0.135 ± 0.009, Ω m0 = 0.27 ± 0.04 (6.31d) T eq = T 0 (1 + z eq ) = (2.725 ± 0.001K) 3250 8860K, or 0.76 ev (6.32) t eq = 1 H 0 1 (1 + z) 3/2 13.6Gyr 3250 3/2 74,000yrs (6.33) 6.5 (recombination=) e + p H + γ (6.34) (81a) (6.35) µ e + µ p = µ H (6.35) ( ) mt 3/2 n = g e (m µ)/t (6.36) 2π [ ][ ] gh mh 2π 3/2 n H = n e n p e B/T B = m e + m p m H = 13.6 ev (6.37) g e g p m p m e T

6 6 X e n e = n p, n B n B n B = η B n γ, η B = 2.75 10 8 (Ω B h 2 ) = 6.1 ± 0.2 10 10 (6.38a) n γ = 2 ζ(3) π 2 T 3, ζ(3) 1.202 (6.38b) g H = 4, g p = g e = 2, m H m p n H n B = 1 X [ ] e me T 3/2 n p n e Xe 2 = n B e B/T = 4 [ ] 2ζ(3) T 3/2 [ ] T 3/2 η B e B/T = 3.84η B e B/T (6.39) 2π π m e m e T = T 0 (1 + z rec ) = 2.725(1 + z rec ) X e = 0.5 (T rec ) 1 + z rec 1370, T rec = 0.323 ev = 3740 K (6.40) T = 0.308 ev X e T 0.26 ev = 3030 K X e 10 4 10 5 t dc z dc = 1100, T dc = 3000K (6.41a) t dc = H 1 0 (1 + z dc) 3/2 = 375,000 (6.41b) 6.6 6.6.1 (B) ( B) *5) B B = B B B n B η B 6 10 10 (6.42) n γ B/B B B n γ (T 10 15 GeV ) ( 1TeV ) * 5) T Λ QCD 200MeV

6 7 B L SO(10) Lepto genesis [1] 100 X B 1 (B 1 ) B 2 (B 2 ) b(b) 1 b(1 b) Γ(X B 1 ) Γ(X All) = b, Γ(X B 2 ) Γ(X All) = 1 b Γ(X B 1 ) Γ(X All) = b, Γ(X B 2 ) Γ(X All) = 1 b (6.43) Γ(X All) = Γ(X All) (6.44) X B = (b b)b 1 + {(1 b) (1 b)}b 2 = (B 1 B 2 )(b b) (6.45) B 1 B 2 b b CP CPT r Γ(B r) = r Γ(B r) = Γ(B r) (6.46) r CPT r r r Γ(r B) = Γ(r B) (6.47) r CP [2]

6 8 6.6.2 nucleo-synthesis(d.n.schramm and M.S.Turner: Rev. Mod. Phys., 70 (1998) 303) T Λ QCD 200MeV () 10MeV ( MeV/ ) p n A Z p + (A Z)n A (6.48) µ A = Zµ p + (A Z)µ n n B e µ A/T = e {Zµ p+(a Z)µ n }/T [ ] 2ζ(3) n B = n n + n p + An A n γ η B = η B A π 2 T 3 (6.49) (6.50) X A = An A n B, X p = n p n B, T (81a) X n = n n n B (6.51) n k = g k [ mt 2π X A = g A 2 A A5/2 Xp Z Xn A Z [ ] 3/2 e (µ m)/t (6.52) n B ( 2π m N T ) 3/2 e B A/[(A 1)T ] ] A 1 (6.53a) B A = Zm p + (A Z)m n m A (6.53b) [ ] A 1 n B = n γ η B (6.1 ± 0.3) 10 10 (2ζ(3)/π 2 )T 3 ( ) T 3/2 8.13 10 14 1 (6.54) MeV B A /[(A 1)T ] (T 1 0.1 MeV ) ρ rad = g π 2 30 T 4 = 3 32πG t 2 (6.55) 2 H = (2t) 1, H 2 = (8πG/3)ρ rad T 1MeV T 1 MeV (t/ ) 1/2 1010 K (t/ ) 1/2 (6.56)

6 9 : T 10 MeV, t 1 ν e + n e + p (6.57a) ν e + p e + + n (6.57b) ν e + ν e e + e + (6.57c) e + e + γ + γ (6.57d) T 0.72 MeV (6.57a) µ ν + µ n = µ e + µ p (6.58) (6.57d) µ(e + ) + µ(e ) = 0 n(e ) = n(e + ) + n p (6.59) n(e ) n(e + ) = ) µ(e + )]/T e[µ(e 1 + n p n(e + ) 1 + η B (6.60) 2µ e /T η B µ n = µ p n n n p = X n X p = e Q/T, Q = m n m p = 1.293 MeV (6.61) T Q X n = X p = 0.5 (6.62) (6.53a) A = 2 g D = 3, B D = m p + m n m D = 2.22 MeV (6.63) [ ] T 3/2 X D = 4.07 η B e 2.22/T (MeV ) 6 10 12 (6.64) m N 2 T 1 MeV, t 1 T 0.72 MeV T D n n n p = e Q/T D 1 6, X n 1 7, X p 6 7, X D 10 12 (6.65) γ + D p + n

6 10 6.1: A = 5, 8 3 T = 0.3 MeV 0.1 MeV t = 1 3 ((6.53a) η A 1 B ) 885.7 ± 0.8sec T = 0.07 MeV (B(He) = 28.3 MeV ) D + D n + 3 He, D + D p + 3 H, D + 3 He p + 4 He D + 3 H 4 He A = 5,6 ( 6.1) 6.2 (Kolb and Turner; The Early Universe) 6.2 ( ) n(p) n/p 1/7 Y 2n n + p = 2(n/p) 1 + n/p = 2/7 8/7 1 4 (6.67) 75% 25% (G.Gamow:Phys. Rev., 73 (1948) 803) (D) ( 3 He) 7 Li η B = n B /n γ D/H Ω B h 2 = 0.017 0.024 η B = 4.7 6.5 10 10 (6.68a) (6.68b)

6 11 6.2: (1 3 1 ) (D.N.Schramm and M.S.Turner: Rev. Mod. Phys., 70 (1998) 303) ( ) η 6 10 Ω B h 2 = 0.0223 ± 0.0008 Ω B = 0.043 (6.69a) η B 6.1 ± 0.3 10 10 (6.69b) - - ( ) ( ) + 6.7 () ((6.18) g ) T D Y = 2e Q/T 1 + e Q/T (6.70)

6 12 6.3: (G.Steigman; Neutrino06) D/H Y(He) 2σ WMAP N ν N ν = 2.75 ( (6.67)) (6.23)(84c) Y Y ( 1 Y ) Q T D (6.71) 2 T D T D T d = 1 g T D 6 g g = g γ + 7 8 (3g ν + g e + g e +) = 2 + 7 (3 2 + 2 + 2) = 10.75 8 (6.72b) (6.72a) N ν = 3 3+ N ν g = (7/4) N ν (6.72a) Y 0.007 N ν ( ) Ω B (= ρ B /ρ c, ρ c = 3H 2 0 /8πG) D/H Ω B 6.3 D/H WMAP CMB Ω B Ω B D/H WMAP ( 6.3 ) D/H = 2.6 ± 0.4 10 5 Y = He/H( )= 0.238 ± 0.005 N ν = 1.7 3.0 (2σ ) *6) * 6) V.Barger et al., Phys. Lett. B566 (2003) 8-18 hep-ph/0305075

6 13 6.8 6.1: 0.72 MeV, 0.6 10 10 K 1sec 0.07 MeV, 0.6 10 9 K 3 3250 0.76 ev, 8860K 74,000 1370 0.323 ev, 3740K 270,000 1100 0.26 ev, 3030K 37,5000.1 k = 1 Z g n ( ) = (2π) 3 f (p)d 3 p (73) Z g ρ ( ) = (2π) 3 ε f (p)d 3 p (74) P ( ) = n < pv > = g Z p 2 3 (2π) 3 3ε f (p)d3 p (75) f (p) = [exp((ε µ)/t ) ± 1] 1, ε = p 2 + m 2 (76) g g = 2 ± (FD) (BE) µ i + j k + j µ i + µ j = µ k + µ l (77) * 7) (µ ) (µ + ) µ = µ + (T m,ε m) E T m (T µ) n = g ζ(3) π 2 T 3 1 : BE (78) 3/4 : FD ζ(3) = 1.202 ρ = g π2 30 T 4 1 : BE (79) 7/8 : FD P = ρ 3 (80) * 7) e + e + 2γ ( 10 9 ) µ < 9 10 6 D.J.Fixsen et al.: Astro. Phys. J. 473 (1996), 576

6 14 BE FD T γ,0 = 2.725 ± 0.001 n γ,0 = 2 ζ(3) T 3 π 2 0 = 410.4 ± 0.5/cm3, Ω γ,0 = ρ γ,0 /ρ c = (2.471 ± 0.004) 10 5 /h 2 (T m,ε m)(be, FD) ( ) mt 3/2 n = g e (m µ)/t (81a) 2π ρ = n (m + 12 ) m v2 = n (m + 32 ) T (81b) P = nt ρ (81c) ds = dq T s = S V = ρ µn+ P T (82) (83) µ = 0 s(t 0 ) k s = ρ + P = 4 ρ T 3 T = 2π2 45 g st 3 = π4 g s 45ζ(3) n γ (84a) π 2 ρ = g 30 T 4 (84b) g s = g = g B + 7 8 g F T 1MeV (84c) g s = 2 + 7 8 3 2 ( 4 3/3 } 11) = 3.91 g = 2 + 7 8 3 2 ( ) 4 4/3 T 1MeV (84d) 11 = 3.36 ( ) 3 T0 = 7.04n γ = 2889.2 cm 3 (84e) 2.725 4: SU(3) SU(2) U(1)

6 15 g s, g T g SU(3) SU(2) U(1) g s g T m e T m e ( ) T ν = (4/11)T γ (?? ) (??) (??) s 0 (75) T S sr 3 (T R) 3 const (85) dp dt = ρ + P µn T dp = ρ + P µn dt (86) T T ds = d(ρv ) + PdV = d[(ρ + P)V ] V dp (87) ds = 1 T [ ] dt (ρ + P)V d[(ρ + P)V ] (ρ + P µn)v T 2 = d + µnv dt T T 2 (88) ( ) S = (ρ + P)V T + (89) ( (87)) T ds ds = 0 S =.1.1 K U N ( m k ) r k n I = 1 2 N k=1 m k r k 2 (90) di dt = m k r k ṙ k = r k p k (91a) d 2 [ I dt 2 = ṙ k p k + r k dp ] k = 2K + r k F k = 2K r k k U (91b) dt U(ar 1,ar 2, ) = a n U r k k U(r 1,r 2, ) = nu (92)

6 16 (91b) d 2 I = 2K nu (93) dt2 d 2 I dt 2 = 1 di t dt di t dt, < ( ) >= 1 0 t Z t 0 dt( ) (94) < K >= 1 2 n < U > (95) E = K +U (96) < K >= n 2 E, < U >= n + 2 n + 2 E (97) N T 3 2 kt = 1 2 < m kv 2 k >= < K > = n < U > = n N 2N 2 < u > (98) (98) n = 1 < K >= 1 < U >= E (99) 2 1/2 1/2 M R < u > = 3 5 GmM R = 1 2 < mv2 > (100a) < v 2 > =< v 2 r > + < v 2 θ > + < v2 φ >= 3 < v 2 r > (100b) M = M virial 5R < v2 r > G (100c) < v 2 r > < v 2 > R

17 [1] A.D.Sakharov,Pizma ZhETF,5(1967)32. [2] M.Yoshimura ;Phys. Rev. Lett., 41(1978)281