<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Similar documents
dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

DVIOUT

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

2011de.dvi


Gmech08.dvi

mugensho.dvi

Chap11.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

v er.1/ c /(21)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


II 2 II

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

i


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

i 18 2H 2 + O 2 2H 2 + ( ) 3K

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

応力とひずみ.ppt

webkaitou.dvi

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

ii

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

1

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Microsoft Word - 触ってみよう、Maximaに2.doc

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

DE-resume

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

入試の軌跡

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

A

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

i

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

6. Euler x

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

K E N Z OU

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

newmain.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Acrobat Distiller, Job 128


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

24.15章.微分方程式

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Part () () Γ Part ,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

pdf

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A

C:/KENAR/0p1.dvi

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

function2.pdf

Transcription:

常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです.

i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs 2 1-5 1-7 4 18 x [5] 3 2

ii y y + f (y) = 0, f (y) = 9 100 (y y 5/3 ) t x = 5 4 log(t4 6t 2 + 4C 1 t 3) + C 2 y = (t 3 3t + C 1 ) 3/2 (t 4 6t 2 + 4C 1 t 3) 9/8 C 1, C 2 [5] 4 1-1 d 2 y dx 2 + ax2 y = 0, a > 0 (1-1-24) y = x [ ( ) ( )] a a AJ 1/4 2 x2 + BY 1/4 2 x2 A, B (1-1-25) 1/4 1-1 (1-1-24) x + x + global analysis local analysis

iii 1 2 1-1 1-2 2 A 5-6 3 4 5 1 4 2-3 5-3 5-5 2010 3

iv 1 1 1-1... 2 1-2......... 8 1-3... 13 1-4................................ 18 1-4-1.... 18 1-4-2 I.... 20 1-4-3 II... 23 1-5.... 25 1-6 1 28 1-7.................... 37 1................... 42 2 43 2-1............................. 44 2-2.................... 51 2-3... 53 2-4................... 63 2-5........................... 75 2................... 79 3 81 3-1... 81 3-2... 83 3-3...................... 88

v 3-4.................... 93 3-5 I... 101 3-6 II... 111 3-6-1... 111 3-6-2................................ 113 3................................. 116 4 118 4-1................................ 119 4-2............................. 121 4-3 p-................................... 124 4-4 c-................................... 128 4-5.................... 130 4-6............................. 136 4................................. 139 5 140 5-1... 140 5-1-1 1 1.................... 140 5-1-2 1.................... 143 5-1-3...................... 145 5-2... 147 5-3................... 148 5-4 1 x =+... 153 5-5............... 157 5-6............................. 159 5................................. 166 167 187 189 190

1 1 2 4 1-1 [5] 2 1-2 1-3 x + x 1 1-4 1-5 Painlevé 1-7

2 1 1-1 f (x) g(x) f (x) g(x) lim x x 0 f (x) g(x) = 0 (1-1-1) x x 0 x x 0 f (x) g(x) g(x) f (x) f (x) g(x) x x 0 (1-1-2a) g(x) f (x) x x 0 (1-1-2b) Landauo f (x) = o(g(x)) x x 0 (1-1-3) f (x) g(x) f (x) g(x) lim x x 0 f (x) g(x) = 1 (1-1-4) f (x) g(x) f (x) x x 0 (1-1-5) x x 0 f (x) g(x) f (x) g(x) x x 0 (1-1-6a) g(x) f (x) x x 0 (1-1-6b) *1 f (x) g(x) x = x 0 x K 1 o O

1-1 3 f (x) g(x) K (1-1-7) x x 0 f (x) g(x) O f (x) = O(g(x)) x x 0 (1-1-8) {ϕ m (x)} m ϕ m+1 (x) = o(ϕ m (x)) x x 0 (1-1-9) asymptotic sequences {ϕ m (x)} a m ϕ m (x) k m=0 k y(x) a m ϕ m (x) ϕ k (x) x x 0 (1-1-10) m=0 a m ϕ m (x) y(x) asymptotic series m=0 y(x) a m ϕ m (x) x x 0 (1-1-11) m=0 {(x x 0 ) m } a m (x x 0 ) m y(x) a m = y(m) (x 0 ) m=0 m! k y(x) m=0 a m (x x 0 ) m = y(k+1) (x 0 + θ(x x 0 )) (x x 0 ) k+1 (x x 0 ) k (k + 1)! (0 <θ<1) x x 0 (1-1-12) a m (x x 0 ) m y(x) m=0

4 1 y(x) a m (x x 0 ) m x x 0 (1-1-13) m=0 x + {x m } y(x) a 0 + a 1 x + a 2 x + = a 2 m x m (1-1-14) m=0 leading term leading behavior controlling factor f (x) a m ϕ m (x), g(x) b m ϕ m (x) x x 0 (1-1-15) m=0 m=0 cf(x) + dg(x) (ca m + db m )ϕ m (x) c, d x x 0 (1-1-16) m=0 f (x) a n (x x 0 ) n, g(x) b n (x x 0 ) n n=0 f (x)g(x) h n (x x 0 ) n, n h n = a m b n m x x 0 (1-1-17) n=0 m=0 n=0 x 0 x + {x m } y(x) a 0 + a 1 x + a 2 x + = a 2 m x m (1-1-18) x ( y(x) a 0 a 1 x m=0 ) dt a 2 x + a 3 2x 2 + a 4 3x 3 + = m=2 a m x m+1 (m 1) (1-1-19) f (x) g(x) x x 0 (1-1-6 ),

1-1 5 x x f (t)dt g(t) dt x x 0 (1-1-20) f (x) f (x) f (x) f (x) 4 5 2 3 1-1 3 y = tan x y = x y 1 y = tan x y = x y = sin x 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10º 30º x 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1-1

6 1 y = sin x sin x x, tan x x x 0 (1-1-21) 1-1 x = 0.17 10 3 sin x x, x 0 x 0.52(π/6) 30 4% tan x x, x 0 x = 0.52(π/6) 30 sin x x = x3 6 + O(x5 ) x 0 (1-1-22) tan x x = x3 3 + O(x5 ) x 0 (1-1-23) O(x 3 ) 1/6 1/3 d 2 y dx + 2 ax2 y = 0, a > 0 (1-1-24) y = [ ( ) ( )] a a x AJ 1/4 2 x2 + BY 1/4 2 x2 A, B (1-1-25) x + 1-4 x + (1-1-24) y(x) = exp(q(x)) (1-1-26) [5] 5 exp(q(x)) d 2 [ ] 2 Q(x) dq(x) + + ax 2 = 0 (1-1-27) dx 2 dx (1-1-24) (1-1-27) 1 2

1-1 7 d 2 Q dx 2 ( ) 2 dq (1-1-28) dx 1 2 (1-1-27) 1 (1-1-28) dq(x) ±i ax dx x + (1-1-29) Q(x) ± i a 2 x2 x + (1-1-30) Q(x) = ± i a 2 x2 + R(x), x 2 R(x) x + (1-1-31) (1-1-27) ±i ( a + d2 R dx + ±i ax + dr ) 2 2 dx + ax2 = 0 (1-1-32) [5] 2 (1-1-31) 2x R (x), 2 R (x) x + (1-1-33) R(x) (1-1-32) (1-1-33) (1-1-32) i a 2i ax dr dx x + (1-1-34) R(x) 1 log x x + (1-1-35) 2 R(x) (1-1-33) x + [ y(x) exp ± i a 2 x2 1 ] 2 log x = 1 [ exp ± i ] a x 2 x2 x + (1-1-24) y(x) 1 [ ] ax 2 ax 2 exp A sin + B cos A, B x + (1-1-36) x 2 2

118 4 d 2 r dt = (4-0-1) 2 r = ( x(t),y(t) ) r 0 (x 0,y 0 ) u 0 y y 0 = (x x 0 )tanθ (x x 0) 2 2v 2 0 cos2 θ (4-0-2) r 0 (x 0,y 0 ) v 0 θ (4-0-2)

4-1 119 1000 m 3 2 h = 2 9.8 [m/s 2 ] 1000 [m] 140 [m/s] 500 [km/h] ICBM 2 (4-0-2) (4-0-1) 6400 km d 2 r dt = GM e 2 r (4-0-3) 2 GM r e r 1-7 1 4-1 1-7 Brook Taylor 1

120 4 ( ) ( ) 2 1 + x 2 2 dy = 4y 2 (y 1) (4-1-1) dx [6] 40 1715 y = u 2 (1 + x 2 ) (4-1-2) (4-1-1) ( ) 2 du (1 + x 2 ) 2xu du dx dx + u2 1 = 0 (4-1-3) (4-1-3) 1 d 2 [ u (1 + x 2 ) du ] dx 2 dx xu = 0 (4-1-4) (4-1-4) A d2 u dx 2 = 0 du dx = c c (4-1-5a) (4-1-5b) ( B 1 + x 2) du xu = 0 (4-1-6) dx A (4-1-5b) (4-1-3) u c 2 ( 1 + x 2) 2cxu + u 2 1 = 0 (4-1-7) (4-1-2) (4-1-7) y y = (1 + x 2 ) ( cx ± 1 c 2 ) 2 (4-1-8) 4-1 B (4-1-6) (4-1-3) ( ) 1 + x 2 u 2 = 0 (4-1-9a) (4-1-2) (4-1-9a) y = 1 (4-1-9b)

4-2 121 y 20 15 10 5 y=1 10 8 6 4 2 0 2 4 6 8 x 10 4-1 4-1 (4-1-9b) (4-1-8) c 1-7 II 4-2 1 ( F x,y, dy ) = 0 (4-2-1) dx p dy dx *1 (4-2-1) x,y,p (4-2-2) 1 2 (x,y) z(x,y) p = z(x,y), q = z(x,y) x y, r = 2 z(x,y) x 2, s = 2 z(x,y) x y, t = 2 z(x,y) y 2

122 4 F(x,y,p) = 0 (4-2-3) F(x,y,p) x,y 1 p (x 0,y 0 ) (x,y) p F(x 0,y 0, p) = 0 (4-2-4) p 0 (4-2-3) (x 0,y 0 ) (x,y) = (x 0,y 0 ) p = p 0 p = f (x,y) (4-2-5) f (x,y) (x 0,y 0 ) 1 f (x,y) (x 0,y 0 ) (5-3-2a) dy = f (x,y) (4-2-6) dx (x,y) = (x 0,y 0 ) (4-2-4) p 0 f (x,y) p (x 0,y 0 ) p 0 m ] ] ] F(x 0,y 0, p) = 2 F(x 0,y 0, p) = = m 1 F(x 0,y 0, p) = 0 p p=p 0 p 2 p=p 0 p m 1 p=p 0 m ] F(x 0,y 0, p) p m 0 (4-2-7) p=p 0 (4-2-3) x = x 0 y = y 0 p = p 0 ] ] F(x,y,p) F(x,y,p) + p 0 x x=x 0,y=y 0 p=p 0 y x x=x 0,y=y 0 p=p 0 ( p)m m ] F(x,y,p) m! p m x 0 (4-2-8) x=x 0,y=y 0 p=p 0 x = x x 0, y = y y 0, p = p p 0 (4-2-9) ] ] F(x,y,p) F(x,y,p) + p 0 x x=x 0,y=y 0 p=p 0 y x=x 0,y=y 0 p=p 0 0 (4-2-10)

4-2 123 (4-2-8) p A( x) 1/m A x 0 (4-2-11a) y p 0 x + B( x) 1+1/m B x 0 (4-2-11b) x = x 0 y = y 0 y y 0 + p 0 (x x 0 ) + B(x x 0 ) 1+1/m x 0 (4-2-12) (x 0,y 0 ) (x,y) = (x 0,y 0 ) m 2 (x,y) (x 0,y 0 ) p (4-2-4) 2 (4-2-3) F(x,y,p) = x x 0 + y y 0 C(p p 0 ) 2 = 0 (4-2-13) C (x 0,y 0, p 0 ) (4-2-8) (1 + p 0 ) x C( p) 2 x 0 (4-2-14) p ± (1 + p 0 ) x/c x 0 (4-2-15a) y p 0 x ± 2 3 1 + p0 C ( x)3/2 x 0 (4-2-15b) (4-2-15b) y y 0 + p 0 (x x 0 ) ± 2 1 + p0 3 C (x x 0) 3/2 x 0 (4-2-15c) (x,y) (x 0,y 0 ) (x 0,y 0, p 0 ) 4-2 (4-2-12) (x 0,y 0 ) cusps

140 5 1 2 4 5-1 [5] B. 5-1-1 1 1 A. separation of variables P(y) dy = Q(x) (5-1-1) dx y x P(t) dt = Q(t) dt + C C (5-1-2) P 1 (y)q 1 (x) dy dx = P 2(y)Q 2 (x) (5-1-3)

5-1 141 y P 1 (t) x P 2 (t) dt = Q 2 (t) dt + C C (5-1-4) Q 1 (t) P 2 (y)q 1 (x) = 0 1 1 2xy dy dx = (x + 1)(y2 1) (5-1-5) x + 1 dx = 2y dy (5-1-6) x y 2 1 x + log x = log y 2 1 + C y = ± 1 ± x exp(x C) C (5-1-7) (5-1-6) = 0 x = 0 y = ±1 (5-1-8) (5-1-5) y = ±1 (5-1-7) C + x = 0 B. P(x,y) dy = Q(x,y) (5-1-9) dx P(x,y), Q(x,y) x y n P(x,y) = x n P(1,v), Q(x,y) = x n Q(1,v) (5-1-10) v = y x (5-1-11) y v (5-1-11) (5-1-9) xp(1,v) dv = [Q(1,v) vp(1,v)] dx (5-1-12) P(1,v) dx dv = Q(1,v) vp(1,v) x (5-1-13)

142 5 (x 2 xy) dy dx = (y2 + xy) (5-1-14) (5-1-11) x(1 v) dv = [ (v 2 + v) v(1 v) ] dx 1 v dx dv = 2v2 x 1 ( log v + 1 ) = log x + C C 2 v (5-1-15) log xy + x y = C (5-1-16) C. Bernoulli equations 1695 James Bernoulli dy dx = a(x)y(x) + b(x)y(x)n n 1 (5-1-17) z(x) = y(x) 1 n (5-1-18) dz = (1 n)[a(x)z(x) + b(x)] (5-1-19) dx y(x) 1 n = Ce F(x) + (1 n)e F(x) x e F(t) b(t) dt, F(x) (1 n) x a(t) dt D. Riccati equations C (5-1-20) 1712 dy dx = a(x)y(x)2 + b(x)y(x) + c(x) (5-1-21)

5-1 143 1 dz y(x) = a(x)z(x) dx (5-1-22) 2 d 2 [ z a ] dx (x) dz 2 a(x) + b(x) + a(x)c(x)z(x) = 0 (5-1-23) dx (5-1-23) (5-1-21) (5-1-21) y 1 (x) y(x) = y 1 (x) + z(x) (5-1-24) (n = 2) dz dx = [ 2a(x)y 1 (x) + b(x) ] z(x) + a(x)z(x) 2 (5-1-25) E. exact equations P(x,y) + Q(x,y) dy dx = 0, f (x,y) = C, P(x,y) y = Q(x,y) x P(x,y) = f (x,y), Q(x,y) = f (x,y) x y (5-1-26) C (5-1-27) 5-1-2 1 1 ( F x,y, dy ) [ ] n [ ] n 1 [ ] 2 dy dy dy + q n 1(x,y) + + q 2 (x,y) + q 1 (x,y) dy dx dx dx dx dx + q 0 (x,y) = 0 (5-1-28) q k (x,y)(k = 0, 1,...,n 1) (x,y) A. 1 (5-1-28) dy/dx n

144 5 [ ][ ] [ ] dy dy dy dx r 1(x,y) dx r 2(x,y) dx r n(x,y) = 0 (5-1-29) dy dx r k(x,y) = 0 (5-1-30) f k (x,y,c) = 0 C (5-1-31) (5-1-29) f 1 (x,y,c) f 2 (x,y,c) f n (x,y,c) = 0 (5-1-32) 1 ( ) 2 dy 2 dy dx dx + 1 y2 = 0 (5-1-33) ( )( ) dy dy dx + y 1 dx y 1 = 0 (5-1-34) (Ce x y + 1)(Ce x y 1) = 0 C (5-1-35) B. 1 (5-1-28) (x,y) k ( y ) F(x,y,p) x k G x, p = 0 (5-1-36) ( y ) p = f x (5-1-37) (5-1-28) (5-1-9, 10) C. 2 (x,y) x,y 1

( ) ( ) dy dy y = f x + g dx dx x p = f (p) + [ xf (p) + g (p) ] dp dx 5-1 145 p x dx dp f (p) p f (p) x (5-1-38) (5-1-39) g (p) p f (p) = 0 (5-1-40) y = x dy dx 1 dy/dx x ( x + 1 p 2 ) dp dx = 0 (1-7-13 ) (1-7-14 ) 5-1-3 A. d n y = f (x) (5-1-41) dxn y = x x 0 dx 1 x1 x 0 dx 2 xn 1 n 1 (x x 0 ) k f (x n )dx n + C k x 0 k! k=0 C 0, C 1,...,C n 1 (5-1-42) y = 1 (n 1)! x n 1 (x t) n 1 (x x 0 ) k f (t)dt + C k x 0 k! k=0 (5-1-43) B. y k

190 c- 129 p- 124 45 91, 97, 177 81 83, 177 83 38 104 165 2 88 88 26 143 19 87, 104 41, 136, 145 18 25 47 148 85 48 55 26 14 49 82 19 165 22 22 47 126 88, 177 89, 96 89, 95 126 20 2 2 3 3 4 4 3 125 123 104 14 154 9 86, 115 92, 100, 113 14

191 84 51 119 107 141 38 14 47 48 47 82 160 162 33 33, 153 147 22 86, 102 44 20 39 142 140 126 84 22, 102 120, 141 90 91, 99 91, 97 2 142 46 82 18 45 P 154 19

2010 Printed in Japan ISBN978-4-627-07651-8