Similar documents
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

The Physics of Atmospheres CAPTER :

Part () () Γ Part ,

( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

PDF

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


TOP URL 1

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

I

液晶の物理1:連続体理論(弾性,粘性)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

Note.tex 2008/09/19( )

高知工科大学電子 光システム工学科

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

chap10.dvi


TOP URL 1

meiji_resume_1.PDF

pdf

( ) ) AGD 2) 7) 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

数学の基礎訓練I


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

i


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Z: Q: R: C:

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

chap1.dvi

2011de.dvi

Gmech08.dvi

chap9.dvi

IA

eto-vol1.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

OHP.dvi

30


( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

keisoku01.dvi


08-Note2-web

構造と連続体の力学基礎

第3章

量子力学 問題

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

QMII_10.dvi

( ) ,

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Transcription:

006 11 8

0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1...................... 10 1.6. Maxwell............... 10 1.6.3........................ 11 1.7......................... 1 13.1........................ 13.1.1 Hartree-Fock................... 13.1................ 14.1.3 Na.................. 14........................ 15.3..................... 16.3.1.................... 16.3............... 17.3.3............ 17 3 19 3.1................ 19 3...................... 0 3.3................ 1 3.4.......................... 3 3.5......................... 3 3.6................. 4 3.6.1.......................... 5 4 7 4.1............................ 7 4...................... 9 1

5 3 5.1............................. 3 5.............................. 3 5.3......................... 34 5.4....................... 35 6 36 6.1.............. 36 6........................ 37 6.3......................... 38 6.3.1........................ 40 6.3....................... 41 6.4....................... 4 6.4.1..................... 4 6.5........................ 43 7 45 7.1........................ 45 7.1.1...................... 45 7.1.......................... 46 7.1.3......................... 47 7.1.4................. 48 7........................... 49 7.3....................... 49 7.3.1............... 50

0 Einstein Laser 1960 CD Laser I, II I, II, III I, II III 3

-, 000, 1981, 1974 1996 1995 1994 000 4

1 1.1 +e e r m k m r(t) = mω 0r(t) + ( e)e(r, t) + ( e)ṙ(t) B(r, t) ω 0 ω 0 k/m m r(t) = mω 0r(t) + ( e)e(0, t) p a ( e)r p a E(0, t) r E x ẍ(t) + ω0x(t) = e E(t) (1.1) m 1.1 1. p a E 5

1. E = 0 ẍ(t) + ω 0x(t) = 0 (1.) x(t) = x 0 cos(ω 0 t + θ) x 0, θ x(t) = Re[x 0 e i(ω 0t+θ) ] x (ω 0) e iω 0t + x ( ω 0) e +iω 0t x ( ω0) = x (ω 0), x ( ω0) = x (ω0) = x 0 E a E a = 1 mẋ(t) + 1 kx(t) = 1 mω 0x 0 (1.3) K U K = 1 mẋ(t) = 1 4 mω 0x 0, U = 1 kx(t) = 1 4 mω 0x 0 (1.4) E a = m ω 0 x(t) 1.3 (1.4) 1.3 p a (t) ( e)r(t) = Re [ ( e)x 0 e iω 0t ] ˆx Re [ p 0 e iω 0t ] ˆx ˆx x W rad W rad = ω4 0 1πε 0 c 3 p 0 = ω4 0 1πε 0 c 3 e x 0 E a (1.5) 6

E a Ė a (t) = W rad τ 0 E a (t); E a (t) = E 0 e (/τ 0) t (1.6) (1.5) 1 τ 0 ω 0 (1.7) (1.) ẍ(t) + τ 0 ẋ(t) + ω 0x(t) = 0 (1.8) (1.7) (1.6) (1.8) [(1.8) (1.6) ] (1.8) x(t) = x 0 (t)e iω 0t (1.9) x 0 (t) e iω 0t x 0 (t) ẋ 0 (t) ω 0 x 0 (t), ẍ 0 (t) ω 0 ẋ 0 (t) ω 0x 0 (t), (1.10) (1.9) (1.8) ẍ 0 (t) iω 0 ẋ 0 (t) ω0x 0 (t) + ) (ẋ 0 (t) iω 0 x 0 (t) + ω τ 0x 0 (t) = 0 0 x 0 (t) ẋ 0 (t) 1 τ 0 x 0 (t); x 0 (t) e t/τ 0 E a (1.3) Ė a (t) = τ 0 E a (t) 7

1.4 (1.8) x(t) = x 0 (t)e iω 0t e t/τ 0 iω 0 t E(t) [ E(t) x(t); E(t) = E 0 exp t ] iω 0 t for (t > 0) τ 0 Fourier E(ω) E(ω) = 0 E(t)e iωt dt = E 0 i(ω 0 ω) + 1/τ 0 I(ω) I(ω) = E(ω) 1 (ω 0 ω) + (1/τ 0 ) ω 0 /τ 0 1.5 ω 0 ω (1.8) ẍ(t) + ẋ(t) + ω τ 0x(t) = ( e) E(t); (1.11) 0 m E(t) = E (ω) e iωt + E ( ω) e +iωt, E ( ω) = E (+ω) (1.11) ω ω 0 ω 0, ω (1.1) x(t) = x (ω) 0 e iωt + x ( ω) 0 e +iωt 8

e iωt x (ω) 0 = ( e/m)e (ω) (ω 0 ω ) iω/τ 0 (1.13) E (ω) E ( ω) = E (ω) = E (ω) E(t) = E (ω) cos ωt (1.14) x (ω) 0 x (ω) 0 e iθ x (ω) 0 (u + iv); u = cos θ, v = sin θ x(t) x(t) = x (ω) 0 e iωt + x ( ω) 0 e +iωt = Re [ ] = Re x (ω) 0 e i(ωt θ) = x (ω) 0 (u cos ωt + v sin ωt) [ x (ω) 0 e iωt ] = x (ω) 0 cos(ωt θ) (1.14) θ u v 90 θ x (ω) 0 u v x (ω) 0, θ, u, v x (ω) 0 ( e/m)e (ω) = 1 (ω 0 ω ) + (ω/τ 0 ) ( 1 ω 0 ) 1 (ω 0 ω) + (1/τ 0 ) tan θ = ω/τ 0 1/τ 0 ω0 ω ω 0 ω ω0 ω u = cos θ = (ω 0 ω ) + (ω/τ 0 ) ω 0 ω (ω0 ω) + (1/τ 0 ) v = sin θ = ω/τ 0 (ω 0 ω ) + (ω/τ 0 ) 1/τ 0 (ω0 ω) + (1/τ 0 ) (1.1) ω 0 ω = (ω 0 + ω)(ω 0 ω) ω 0 (ω 0 ω) ω(ω 0 ω) (1.15) x 0 30 5 0 15 10 5 τ 0 =10 ω 0 =1 0 0 0.5 1 1.5 ω θ 3.5 1.5 1 0.5 τ 0 =10 ω 0 =1 0 0 0.5 1 1.5 ω Rex 0, Imx 0 5 4 3 1 0-1 - Re x 0 Im x 0 τ 0 =10 ω 0 =1-3 0 0.5 1 1.5 ω 1.1: 9

1.4 (1.13) 1.6 1 1.6.1 p p e r a = p (ω) e iωt + p ( ω) e +iωt r r a (1.13) p (ω) = e r (ω) a = e /m (ω 0 ω ) iω/τ 0 E (ω) (t) n P (r, t) ω P (ω) (r, t) = n e /m (ω 0 ω ) iω/τ 0 E (ω) (r, t) ε 0 χ(ω)e (ω) (r, t) (1.16) χ(ω) χ(ω) = ω p (ω 0 ω ) iω/τ 0 ; ω p ne ε 0 m (1.17) ω p D D ε 0 E + P χ ε ε = ε 0 (1 + χ) (1.18) (1.17) (1.18) ε 1.6. Maxwell Maxwell D = ρ t, B = 0, E = B t, 1 H = j + D t 10

ρ t = 0, j = 0 D = ε 0 E + P, B = µ 0 H Maxwell E ( E) + E E µ 0 ε 0 t = µ P 0 (1.19) t ( E) = ( E) E ρ t = j = 0 Maxwell E P x B y z E = E(z, t)ˆx, P = P (z, t)ˆx (1.19) ( z 1 c t c 1/ ε 0 µ 0 ) E(z, t) = 1 ε 0 c P (z, t) t (1.0) 1.6.3 ω K E(z, t) = E (ω) (z, t) + E ( ω) (z, t) = E (ω) (z)e i(kz ωt) + E ( ω) (z)e i(kz ωt) (1.1) E ( ω) = E (ω) E (ω) = E ( ω) E ω ω 0, K k ω c ω 0 c E (ω) (z) K (1.10) E (z) KE(z), E (z) KE (z) K E(z), (1.0) E(z, t) (1.1) P (z, t) (1.16) K E(z) + ike (z) + E (z) + ω ω E(z) = c c χ(ω)e(z) 11

(K k )E(z) ike (z) = k χ(ω)e(z) K k = k Re[χ(ω)] k ω p ω ω 0 ω (ω 0 ω) + 1/τ 0 KE (z) = k Im[χ(ω)]E(z) k ω p ω 1/τ 0 (ω 0 ω) + 1/τ 0 E(z) (1.15) ω 0, τ 0, ω p 1 K ω E(z) 1.7 (1.17) ω p +e e L x nex +nex E E = nex/ε 0 F = ee mẍ = ne ε 0 x ω p = ne ε 0 m L 1

.1.1.1 Hartree-Fock Hartree-Fock 1/r 13

r V (r) LS ( ) H 0 = p + V (r) (.1) m V (r).1. (.1) L z L z s z s z r r n = 1,, 3, l = 0, 1,,, n 1 m = l, l + 1,, l + l + 1 z E n l m m V 1/r l E n n l l l 0 1 3 4 s p d f g m (l + 1) 1 3 5 7 9 () Hartree-Fock Slater.1.3 Na Na 11 1s s p 6 3s 14

11 p 10 3s 3s 3p l = 1 m = 1, 0, 1 3 LS LS J = l + s J 3/ 1/ Na D LS. Ĥ Ĥ = Ĥ0 + Ĥ Ĥ0 Ĥ 0 n = W n n ; n = 0, 1,, Ĥ ψ t = 0 0 ψ i t ψ = Ĥ ψ = (Ĥ0 + Ĥ ) ψ t ψ(t) Ĥ0 ψ(t) = n a n (t) n a n (t) a n (t) b n (t)e iw nt/ b n (t) i n ḃ n (t)e iw nt/ n = n b n (t)e iw nt/ Ĥ n (.) 15

m iḃm(t) = n m Ĥ n e i(w m W n )t/ b n (t) (.3) b 0 = 1, b n = 0 (n 0) for t = 0.1 (.).3 Ĥ0 Ĥ.3.1 Ĥ = Ĥ0 + Ĥ Ĥ0 Ĥ Ĥ Ĥ = ( eˆr a ) E(r, t) = ˆµ a E(r, t) ˆr a r ˆµ ( e)ˆr a E(r, t) = E 0 cos ωt Ĥ = eˆr a E 0 cos ωt = ˆµ a E 0 cos ωt (.4) 16

.3. Ĥ0 r a r a l (.4) even odd even Ĥ even = odd Ĥ odd = 0 Ĥ even Ĥ odd, odd Ĥ even 1 m Ĥ n = 0 m n..3 l.3.3 ω 0 1 ω W 1 W 0, ω W n W m for n, m 0, 1 (.5) m Ĥ n = H mn cos ωt (.3) iḃm(t) = n H mn cos ωte i(w m W n )t/ b n (t) H m0 cos ωte i(wm W 0)t/ 1 17

t = 0 b 0 (0) = 1, b n (0) = 0(n 0) t 0 b 0 (t) 1, b n (t) 0(n 0) m 0 b m (t) = 1 i t 0 = 1 i H m0 1 i H m0 dt H m0 cos ωt e i(w m W 0 )t / [ e i(ω+(w m W 0 )/)t 1 i(ω + (W m W 0 )/) e i(ω (Wm W0)/)t 1 i(ω (W m W 0 )/) e i(ω (W m W 0 )/)t 1 i(ω (W m W 0 )/) (.5) b m (t) m = 1 b 1 (.5) 0 1 ] 18

3 3.1 Ĥ ψ ψ i ψ = Ĥ ψ (3.1) t ψ n ; n = 0, 1,, ψ = n c n n ψ (c 0, c 1, c, ) ˆρ ψ ψ (3.) A ˆρ A = ψ ψ A ρ n,m n ˆρ m = n ψ ψ m = c n c m ψ Ô O ψ Ô ψ O = Tr[ˆρÔ] (3.3) 19

Tr[ˆρÔ] = n n ˆρÔ n = n n ψ ψ Ô n = n ψ Ô n n ψ = ψ Ô ψ i ˆρ = [Ĥ, ˆρ] (3.4) t (3.1) 3.1 (3.4) 3. ψ ψ 1 P 1 ψ P ψ 3 P 3 P 1 ψ j ˆρ = ψ j P j ψ ; P j = 1 (3.5) j (3.4) (3.3) j O = j P j ψ j O ψ j = Tr[ˆρÔ] ˆρ Tr[ˆρ] = 1 (3.6) 0

(3.) ˆρ = ˆρ (3.7) (3.5) (3.7) 3. (3.6) 3.3 (3.7) 3.4 3.3 Ĥ = Ĥ0 + Ĥ Ĥ0 a b Ĥ 0 a = W a a, Ĥ 0 b = W b b ; W a W b ω 0 Ĥ Ĥ = ˆµ E(r, t); ˆµ eˆr a r ˆµ a Ĥ a = b Ĥ b = 0 Ĥ a Ĥ b = a ˆµ b E p ab E(t) = b Ĥ a t ψ(t) ψ(t) = c a (t) a + c b (t) b c a (t) = e iw at/ c a (0), c b (t) = e iw bt/ c b (0) 1

N ˆρ i ψ i ˆρ = 1 ψ i ψ i N i ˆρ ρ aa = 1 N c a,i c a,i, i ρ ab = 1 N c a,i c b,i, i etc. ψ i = c a,i a + c b,i b i ˆρ = [Ĥ, ˆρ] t a b i a ˆρ b = a Ĥ ˆρ b a ˆρĤ b t = H aa ρ ab + H ab ρ bb ρ aa H ab ρ ab H bb = (W a W b )ρ ab p ab E(t)ρ bb + p ab E(t)ρ aa ρ ab = iω 0 ρ ab + i p abe(t) (ρ bb ρ aa ) (3.8) ρ ba = ρ ab = iω 0 ρ ba i p bae(t) (ρ bb ρ aa ) (3.9) ρ aa = i p abe(t) ρ bb = i p bae(t) ρ ba i p bae(t) ρ ab (3.10) ρ ab i p abe(t) ρ ba (3.11) ρ aa + ρ bb = 0 (3.1) ρ aa ρ bb = i p abe(t) ρ ba i p bae(t) ρ ab (3.13) (3.6)

3.4 ˆρ E(t) ρ ba (3.8) (3.9) ρ ba = b ˆρ a = c b (t)c a (t) ρ ba ρ ba e iw bt/ e +iwat/ c b (0)c a (0) e iω 0t ρ ba ω 0 E(t) E(t) = E (ω) e iωt + E ( ω) e +iωt ; E ( ω) = E (ω) (ω ω 0 ) ρ ba (3.9) ρ ba = iω 0 ρ ba i p ) ba (E (ω) e iωt + E ( ω) e +iωt (ρ bb ρ aa ) E ( ω) ω ω 0 E ( ω) ω ρ ba (t) ρ (ω) ba (t)e iωt ρ (ω) ba (t) e iωt ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) ip ba (E (ω) + E ( ω) e +iωt ) (ρ bb ρ aa ) i(ω 0 ω)ρ (ω) ba (t) ip ba E(ω) (ρ bb ρ aa ) (3.14) E(t) E ( ω) 3.5 ρ ba = 1 N c b,j c a,j (3.15) j c b,j, c a,j 3

(3.15) (3.14) γ(3.10) (3.11) Γ ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) γρ(ω) ba ρ aa (t) = i p abe ( ω) ρ bb (t) = i p bae (ω) ρ (ω) ba ρ ( ω) ab ip ba E(ω) (ρ bb ρ aa ) (3.16) ip bae (ω) ρ ( ω) ab + Γρ bb (3.17) i p abe ( ω) ρ (ω) ba bb (3.18) (3.17) (3.18) γ Γ 3.6 (3.16) ρ (ω) ba = 1 (ω 0 ω) iγ p ba E (ω) (ρ aa ρ bb ) (3.19) ρ aa 1, ρ bb 0 ρ (ω) 1 p ba E (ω) ab = (ω 0 ω) iγ P ˆµ ˆp P (ω) = P = N V Tr[ˆρˆp] = N V [ρ abp ba + ρ ba p ab ] = N [ ] ρ ( ω) ab p ba e +iωt + ρ (ω) ba V p abe iωt P ( ω) e +iωt + P (ω) e iωt N/V (ω 0 ω) iγ p ba p ab (ρ aa ρ bb )E (ω) ε 0 χ(ω)e (ω) χ(ω) ε 0 χ(ω) = N V 1 (ω 0 ω) iγ p ba (ρ aa ρ bb ) (3.0) 4

(1.17) ε 0 χ cl (ω) = N V e /m (ω 0 ω ) iω/τ 0 N V 1 (ω 0 ω) i/τ 0 e ω 0 m ρ aa ρ bb = 1 (3.0) χ(ω) χ (ω) + iχ (ω) = N ω 0 ω p ba V (ω 0 ω) + γ ε 0 + i N V ε(ω) ε(ω) = ε 0 (1 + χ(ω)) c c = 1 εµ 1 ε0 µ 0 1 1 + χ(ω) c 0 n(ω) γ p ba (ω 0 ω) + γ ε 0 n(ω) χ(ω) n(ω) = 1 + χ(ω) 1 + 1 χ (ω) + 1 iχ (ω) n (ω) + iκ(ω) n n k ω k = nω c 0 = ω c 0 (n + iκ) [ ( )] [ ω E (ω) e i(kz ωt) = E (ω) exp i n z ωt exp κ ω ] z c 0 c 0 K(ω) ω c 0 n (ω) κ(ω) 3.6.1 ρ bb 0 (3.16) (3.18) ρ (ω) 1 p ba E (ω) ba = (ω 0 ω) iγ ρ bb = [ ] Γ Im p ab E ( ω) ρ (ω) ba 1 = ρ aa + ρ bb (ρ aa ρ bb ), ρ ( ω) ab = ρ (ω) ba 5

ρ aa ρ bb = ρ (ω) ba = (ω 0 ω) + γ (ω 0 ω) + γ + γ p ba E (ω) (3.1) Γ ( ) pba E (ω) (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) (3.) Γ ω P (ω) = N V ρ(ω) ba p ab = N V (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) Γ p ba E(ω) χ(ω) = N V (ω 0 ω) + iγ (ω 0 ω) + γ + γ p ba E (ω) Γ p ba ε 0 (3.3) E(t) χ(ω) (1.17) 6

4 4.1 Ĥ = Ĥ0 + Ĥ ; Ĥ = ˆµ E(t) Ĥ 0 1 = W 1 1, Ĥ 0 = W ; ω 0 = W W 1 ψ = c 1 (t) 1 + c (t) i ψ = Ĥ ψ t iċ 1 (t) = W 1 c 1 (t) µ 1 E(t)c (t) iċ (t) = µ 1 E(t)c 1 (t) + W c (t) Ĥ µ 1 1 ˆµ c i (t) = b i (t)e iw it/ ; i = 1, iḃ1(t) = µ 1 E(t)b (t)e iω 0t iḃ(t) = µ 1 E(t)b 1 (t)e +iω 0t 7

E(t) = E (ω) e iωt + E ( ω) e +iωt ω 0 ω ω 0, ω ḃ 1 (t) = i 1 µ 1 E ( ω) e i t b (t) ixe i t b (t) (4.1) ḃ (t) = i 1 µ 1 E (ω) e +i t b 1 (t) ix e +i t b 1 (t) (4.) t = 0 b 1 (0) = 1, b (0) = 0 t 0 b 1 (t) 1 (4.) b (t) t 0 dt ix e i t = ix e i t/ sin 1 t t b (t) = 4 X sin 1 t (4.3) = ω 0 ω = 0 1/t t δ(ω 0 ω) = π lim sin [ (ω 0 ω) t ]] t (ω 0 ω) t (4.4) (4.3) (4.3) X = 1 µ1 E (ω) 1 = µ 1 E (ω) cos θ (4.5) 1 ε 0E (t) + 1 ( ) µ 0H (t) = ε 0 E (t) = ε 0 E (ω) e iωt + E ( ω) E e +iωt = (ω) ε (4.3) E (ω) ω U(ω)dω E (ω) ε 0 U(ω)dω 8

(4.5) cos θ cos θ = 1 dω cos θ = 1 4π 3 b (t) = µ 1 3 ε 0 = π 3 µ 1 ε 0 dωu(ω) sin 1 t ; = ω 0 ω U(ω 0)t ω 1 t (4.4) ω 1 ω 1 = π 3 µ 1 ε 0 U(ω 0) (4.6) U(ω 0 ) (4.1) b 1 = 0, b = 1 ω 1 ω 1 ω 1 = ω 1 4.1 (4.4) t ω 4. 1917 T W 1 W (W W 1 ω 0 0) N e 1 N e N e N e 1 = exp [ W ] W 1 k B T 9 (4.7)

U T (ω) U T (ω) = ω3 π c 3 1 e ω/k BT 1 (4.8) (1) () B 1 U T (ω 0 ) B 1 U T (ω 0 ) A 1 N e 1B 1 U T (ω 0 ) = N e B 1 U T (ω 0 ) + N e A 1 (4.9) T (4.7) (4.8) U T (ω 0 ), N e 1 = N e (4.9) B 1 = B 1 B (4.9) (4.8) A A 1 = ω3 0 π c 3 B BU T (ω 0 ) (4.6) ω 1 A = µ 1 3πε 0 c 3 ω3 0, B = π 3 µ 1 ε 0 (4.10) 30

A (4.10) ω BU T (ω 0 ) A = 1 N1/N e e 1 = 1 e ω 0/k BT 1 = n ω 0 A + BU T (ω 0 ) = A(1 + n ω0 ) n ω 1 1eV 1.16 10 4 K n ω 1 31

5 5.1 W t W t W E(t) = E 0 exp [ iω 0 t 1 ] γt, for (t > 0) E(ω) = I(ω) 0 I(ω) E(ω) E(t)e iωt dt = E 0 1 i(ω ω 0 ) + γ/ 1 (ω ω 0 ) + (γ/) γ 5. τ c τ p(τ) p(τ) = 1 τ c e τ/τc (5.1) 3

[(5.1) ] τ Q(τ) Q(τ) p(τ) Q(τ) = τ p(τ )dτ Q (τ) = p(τ) Q(τ) γ c τ τ + τ γ c τ Q(τ + τ) Q(τ) = γ c τq(τ) = dq(τ) dτ = γ c Q(τ) Q(0) = 1 Q(τ) = e γ cτ p(τ) = Q (τ) = γ c e γcτ τ c τ c =< τ >= 0 τp(τ)dτ = 1 γ c (5.1) j t j E(t) E(t) = E 0 exp( iω 0 t iθ j ) for t j < t < t j+1 θ j ( π, π] τ j t j+1 t j (5.1) E(ω) = E(t)e iωt dt = j tj+1 t j E 0 e i(ω 0 ω)t dt e iθ j E(ω) = j,j j j e iθ j +iθ j θ j 1 π < E(ω) > θ = π π π π π dθ 1 dθ π dθ j j,j j j e iθ j +iθ j = π π j j dθ 1 dθ e iθ j+iθ j j,j π = j,j j j δj,j = j π j 33

j = tj +τ j E 0 e i(ω0 ω)t sin(ω 0 ω) dt = E 0 t j (ω 0 ω)/ e i(ω 0 ω)(τ j /+t j ) τ j < E(ω) > θ = j E 0 [ sin(ω0 ω) τ ] j (ω 0 ω)/ τ j < E(ω) > < E(ω) > θ,τ = = 1 τ c (ω 0 ω) /4 0 (ω 0 ω) + 1/τc 0 dτ p(τ) [ sin(ω0 ω) τ (ω 0 ω)/ dτ e τ/τ c sin (ω 0 ω) τ /τ c ] 5.3 v ω 0 z = ω (v/c) ( ) ω ω 0 1 v z /c ω 0 1 + v z c z v z [ ] m P (v z ) = πk B T exp mv z k B T (5.) I(ω) (5.) v z I(ω) P (v z (ω)) dv ] z [ dω exp mc (ω ω 0 ) k B T T ω 0 34

5.4 35

6 (LASER) Light Amplification by Stimulated Emission of Radiation MASER (Tawnes et al, 1954) 1960 Maiman LASER LASER 6.1 W W = E j = E P t ) = (E (ω) e iωt + E ( ω) e )( iωp +iωt (ω) e iωt + iωp ( ω) e +iωt ] = iωe (ω) P ( ω) iωe ( ω) P (ω) = Im [ωe ( ω) P (ω) P (ω) = ε 0 χ(ω)e (ω) [ W = ε 0 Im ωχ(ω) E (ω) ] = ε 0 ωχ (ω) E (ω) 36

W χ (ω) χ (3.0) χ(ω) = n p ab ε 0 (ω 0 ω) + iγ (ω 0 ω) + γ (ρ aa ρ bb ) ρ aa > ρ bb = χ > 0 ρ aa < ρ bb = χ < 0 6. Maxwell divd = ρ, rote = B D, divb = 0, roth = t t + j ; D = ε 0 E + P, B = µ 0 H + M ρ = M = 0, j = σe z z xy E(r, t) = E(z, t) x y E E t c E z + σ ε 0 E t = 1 ε 0 P t (6.1) c 1/ ε 0 µ 0 L k m ω m k m = mπ L, ω m = ck m = mπ L c E(z, t) = [ E (ω) (t)e iωt + E ( ω) (t)e +iωt] sin k m z (6.) P (z, t) = [ P (ω) (t)e iωt + P ( ω) (t)e +iωt] sin k m z E (ω) (t) ω 37

(6.1) [ ] Ė (ω) + i (ω m ω) iκ E (ω) = i ω P (ω) (6.3) ε 0 κ (ω m ω ) ω(ω m ω) σ ε 0 E (ω) (t) = E (ω) (t) e iφ(t), ( d Ė (ω) E (ω) (t) (t) = dt + i φ(t) E (ω) (t) ) e iφ(t) (6.3) d E (ω) (t) dt P (ω) = ε 0 χ(ω)e (ω) = ε 0 (χ (ω) + iχ (ω))e (ω) +i φ(t) E (ω) (t) ] E +i [(ω m ω) κ (ω) (t) ω = i (χ (ω)+iχ (ω)) E (ω) (t) d E (ω) (t) [ + κ + ω E (ω)] dt χ (ω) (t) = 0 (6.4) φ(t) + (ω m ω) ω χ (ω) = 0 (6.5) χ < 0 6.1 (6.1) (6.3) 6.3 (6.4) (6.5) κ + ω χ (ω) = 0 (6.6) ω + ω χ (ω) = ω m (6.7) 38

χ (3.16) (3.18) (3.1) (3.) (3.17) (3.18) ρ (ω) ba (t) = i(ω 0 ω)ρ (ω) ba (t) γρ(ω) ba ρ aa = i p abe(t) ρ bb = i p bae(t) ip ba E(ω) (ρ bb ρ aa ) ρ ba i p bae(t) ρ ab Γ(ρ aa ρ 0 aa) ρ ab i p abe(t) ρ ba Γ(ρ bb ρ 0 bb) ρ 0 aa ρ0 aa a, b ˆρ (6.) ρ (ω) ba (z) = p ba E (ω) (ω 0 ω + iγ) sin k m z (ω 0 ω) + γ + γ p ba E (ω) (ρbb 0 ρ 0 aa) Γ sin k m z sin k m z P ) ( ) P = n (p ab ρ ba + p ba ρ ab = n p ab ρ (ω) ba e iωt + p ba ρ ( ω) ab e +iωt ] [P (ω) (t)e iωt + P ( ω) (t)e +iωt sin k m z (6.8) ρ (ω) ba P (ω) P (ω) = n (ω 0 ω + iγ) p ba (ω 0 ω) + γ + 3 4 γ Γ p ba E (ω) (ρ0 bb ρ 0 aa)e (ω) (6.9) (ω 0 ω + iγ) χ(ω) = n (ω 0 ω) + γ + 3 γ p ba E (ω) 4 Γ p ba ε 0 (ρ0 bb ρ 0 aa) (6.10) 39

[(6.9) ] P e iωt sin k m z (6.8) sin k m z 0 L : n p ab L 0 dzρ (ω) L ba (z) sin k mz = P (ω) dz sin k m z L/ 0 L dzρ (ω) 0 L ba (z) sin k c sin k m z mz 0 a + b sin k m z dz c L ( dz sin k m z 1 b ) a 0 a sin k m z = c ( L a b ) 3 a 8 L = c ( 1 b a a c 1 L a 1 + b 3 = c L a + 3 a 4 4 b a, b, c (6.9) ) 3 L 4 6.3.1 (6.6) χ (6.10) : κ = ω n γ (ω 0 ω) + γ + 3 4 γ Γ p ba E (ω) p ba ε 0 (ρ0 bb ρ 0 aa) (6.11) ρ 0 bb ρ0 aa E (ω) (6.11) E (ω) (ρ 0 bb ρ0 aa) (ρ 0 bb ρ0 aa) E (ω) E (ω) N 0 n (ρ 0 bb ρ 0 aa) N 0 N th (ω 0 ω) + γ (6.11) 40 γ ω ε 0 p ba κ (6.1)

(6.1) E (ω) = Γω 6κε 0 ( N 0 N th ) (6.13) Γ 6. (6.1) (6.13) (6.11) 6.3. ω 0 ω 0 ω m ω 0 ω m ω (6.7) ω = ω m 1 + 1 χ (ω) ω (6.10) χ = ω 0 ω χ γ (6.6) χ = (ω 0 ω) κ ωγ (6.7) ω = γ ω m + κ ω 0 γ + κ (6.14) ω ω 0 ω m γ κ κ γ ω ω m 41

6.4 (1) () 6.4.1 fs(10 15 s) k m = π L m, ω m = c k m ; m : ω 0 N ω ν = ω 0 + ω ν, k ν = ω ν /c ; ω π [ L c, ν N 1, N 1 ] E(z, t) = (N 1)/ ν= (N 1)/ E ν e i(ωνt+φν)+ikνz φ ν = 0 E ν = E 0 z = 0 4

E(0, t) = (N 1)/ ν= (N 1)/ E 0 e i(ω 0+ ω ν) = E 0 e iω 0t sin ( ω N ) t ( sin ω t ) E(0, t) = E 0 ( sin ω N ) t ( sin ω t ) (6.15) t = 0 t T t T t = π N ω, T = L c N ω T L 10cm N 10 4 10 6 6.3 (6.15) t T 6.5 (Al O 3 ) Cr 3+ Cr 3+ ( 694.3nm) Nd YAG (Y 3 Al 5 O 1 ) 43

Nd 3+ (CW) Nd YAG He Ne He Ne Ne n p p n ( n p ) 44

7 7.1 III Maxwell E = B t, H = D, B = 0, D = 0; t D = ε 0 E, B = µ 0 H E = A t, B = A (7.1) A 1 A = 0, A = 0 (7.) c t H H = 1 (ε 0 E + µ 0 H )dr (7.3) 7.1.1 A(r, t) = q(t)u(r) 45

(7.) q(t) u(r) 1 c u(r) q(t) t = 0 q l (t) t = ω l q l (t), u l (r) = k l u l (r); k l ω l c (7.4) A A(r, t) = 1 q l (t) u l (r) (7.5) ε0 (7.4) q(t) u(r) u l (r) = 1 e ik l rêl ; ê l k l V k l ê l l l = (l x, l y, l y ), l i = 0, ±1, ±, ; k l = π l = (l, σ); L l, σ = 1, ; ê ê (l,1) (l,) u l (r) u l(r) u l (r)dr = δ l,l E(r, t) = B(r, t) = 1 ε0 l l q(t) u l (r) (7.6) 1 q(t) ik l u l (r) (7.7) µ 0 ε0 l (7.3) H = 1 ( ) q l + ωl ql l (7.8) (7.4) q l (t) 7.1. q l p l (7.8) H = H l ; H l 1 ( ) p l + ωl ql l 46

q l p l ˆq l ˆp l [ˆq l, ˆp l ] = i δ l,l ˆp l = i q l Ĥ = 1 ( ) ˆp l + ωl ˆq l l etc. â l â l: â l â l ωl ˆq 1 l + i ˆp l ωl ˆq 1 l i ˆp l ωl ωl ( ) ˆq l = â l ω + â l l ωl ( ) ˆp l = i â l â l (7.9) [â l, â l ] = δ l,l, [â l, â l ] = 0, [â l, â l ] = 0 (7.10) Ĥ = ( ω l â lâl + 1 ) l (7.11) 7.1 (7.10) (7.11) 7.1.3 ˆn ˆn â â ; [â, â ] = 1 n n > 1. ˆn. ˆn n n 0 3. n > ˆn n â n > n 1 4. ˆn n 47

5. n â n n > ˆn 6. 0 > â 0 >= 0 â n 0 > ˆn n 7. â n >= n + 1 n + 1 >, â n >= n n 1 > 7. 7.1.4 (7.6) (7.9) Ê(r) = ( ωl i â 1 l e ik l r 1 âl e +ik l r ) ê l ε 0 l V V â Ê â l (t) i dâ l (t) dt = [â l (t), H] = ω lâ l (t) = â l (t) = â l (0)eiω lt â l (0) â l â l (t) = â l eiω lt, â l (t) = â l e iω lt Ê(r, t) = ( ) ωl i â 1 l e i(ω lt k 1 l r) â l e i(ω lt k l r) ê l ε 0 l V V Ĥ(r, t) = l ω l µ 0 ( â l ) 1 e i(ω lt k 1 l r) â l e i(ω lt k l r) V V i k l k l ê l H l n l E = ( ω l n l + 1 ), ψ >= n 1 n n 3 > (7.1) l 48

7. (7.1) (7.11) l n l ê l Ê(r, t) = ie l â l e i(ω lt k l r) ie l â l ei(ω lt k l r) ; E l ωl ε 0 V (7.13) n n > < Ê > < n Ê n >= 0 ( < Ê > = < n ie l â l e i(ω lt k l r) ie l â lt k l r)) l e+i(ω n > ( ) = El < n â l â l + â lâl = El (n + 1) < Ê > = E l n + 1 n n 1 7.3 cos(ωt k r) (7.13) < Ê(r, t) >= E(+) e i(ω lt k l r) + E ( ) e +i(ω lt k l r) (7.14) â l â l α >= α α > (7.15) (7.15) < α â l =< α α 49

Ê < α Ê α > = < α ie l â l e i(ω lt k l r) ie l â l e+i(ω lt k l r) α > = ie l α e i(ω lt k l r) ie l α e +i(ω lt k l r) E (+) = ie l α (7.14) (7.15) 7.3.1 â α > â α >= α α > â α α >= c n n > â n > n=0 αc n = n + 1c n+1 = c n = αn n! c 0 c 0 α >= e α / n=0 α n n! n > (7.16) P (n) P (n) = < n α > α n α = e n! m mn e n! ; m α (7.17) m = α 50

(7.17) < ˆn >=< α â α >=< α â â α >= α ( ) < ˆn > = < α â â â â α > = < α â â â â + â â α > = α 4 + α < ˆn > < (ˆn < ˆn >) > = < ˆn > < ˆn > = α < ˆn > < ˆn > = α α = 1 α α (7.9) ω ˆq = ω (â + â), ˆp = i (â â) < ˆq > = < α ˆq α > = ω (α + α), < ˆq > = ω < α (â + â) α > = ω (α + α + 1 + α ) q < ˆq > = < ˆq > < ˆq > = p ω < ˆp > = q p = ω 51

< Ê > = < α Ê α > = ie l α e i(ω lt k l r) ie l α e +i(ω lt k l r) ( < Ê > = < α Ê α > = < α [ie l â l e i(ω lt k l r) â lt k l r))] l e+i(ω α > [ ] = El α e i(ω lt k l r) + α + 1 α e +i(ω lt k l r) ) < Ê >=< (Ê < Ê > >=< Ê > < Ê > = El α < Ê > = E l, < Ê > E l α 5