$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

Similar documents

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$ \S : (\alpha Platon Euclid ( 2 (\beta 3 ( \S $(\beta$ ( 2 ( Era

A Brief Introduction to Modular Forms Computation

76 20 ( ) (Matteo Ricci ) Clavius 34 (1606) 1607 Clavius (1720) ( ) 4 ( ) \sim... ( 2 (1855) $-$ 6 (1917)) 2 (1866) $-4$ (1868)

main.dvi

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

Tabulation of the clasp number of prime knots with up to 10 crossings

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

Centralizers of Cantor minimal systems

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

untitled

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

1

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

一般相対性理論に関するリーマン計量の変形について

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

untitled

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math


(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t



330

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

本文/020:デジタルデータ P78‐97

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

[bica]) our gmeff means Abel Milnor $K$ - motif (Mochizuki Satoshi) * Graduate School of Mathematical Sciences, the University o

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

ヘンリー・ブリッグスの『対数算術』と『数理精蘊』の対数部分について : 会田安明『対数表起源』との関連を含めて (数学史の研究)

 5月9日、看護の日の記念イベントとして、病院を訪れた方々に絆創膏が配布されました

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

第85 回日本感染症学会総会学術集会後抄録(I)

( ) ( ) (B) ( , )

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1


162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

untitled

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2


$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

Twist knot orbifold Chern-Simons

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

dプログラム_1

数理解析研究所講究録 第1908巻

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

プレゼン資料 - MathML

数論的量子カオスと量子エルゴード性

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

ω ω

横組/中高 技術科問題           ●


2日目 10月31日(金曜日)プログラム

本文/本文

(MAKOTO KIKUCHI) Tarski-Seidenberg,, model-completeness Wilkie,., Hilbert 17 Hilbert. \S 1, \S 2.., \S 3 Tarski-Seidenberg, \S

Pari-gp /7/5 1 Pari-gp 3 pq

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似)

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

サイバニュース-vol134-CS3.indd

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

数理解析研究所講究録 第1955巻

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

1 1 Emmons (1) 2 (2) 102

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

流体としてのブラックホール : 重力物理と流体力学の接点

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_

Duality in Bayesian prediction and its implication

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

cm H.11.3 P

教科専門科目の内容を活用する教材研究の指導方法 III : TitleTeam 2 プロジェクト ( 数学教師に必要な数学能力に関連する諸問題 ) Author(s) 青山, 陽一 ; 神, 直人 ; 曽布川, 拓也 ; 中馬, 悟朗 Citation 数理解析研究所講究録 (2013), 1828

Transcription:

$\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$ $\{s(\alpha)\}s\in G$ $\mathit{0}_{k}$ free -basis Galois $K/F$ normal integral basis ( NIB ) $\text{ }$ $\alpha$ $K/F$ NIB NIB [13] 1 $M$ $M/F$ Galois $I\mathrm{f}/F$ $I\iota /F$ $\alpha\in \mathit{0}_{k}$ NIB $K/F$ NIB $\tau_{r_{r^{r}/m}}(\alpha)$ $M/F$ NIB $M$ $F$ $I\iota $ NIB $F$ NIB NIB NIB Hilbert (1897) ( NIB Normalbasis ([9 \S 105 (p216); cf \S 3])): 2(Hilbert) ([9 Satz 132]) $F:=\mathbb{Q}$ $K/\mathbb{Q}$ $n$ Abel $n$ $IC/\mathbb{Q}$ $K/\mathbb{Q}$ NIB $K/\mathbb{Q}$ $\overline{\mathrm{t}}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{y}$ ramffied Galois $K/F$ NIB tamely ramified (cf [10 Theorem $K/\mathbb{Q}$ 13]) NIB tamely ramified (Hilbert-Speiser ) Kummer Stickelberger Hilbert 2 ([9 Satz 136 ]; Satz 89 $)$ (Washington [15 Remarks (2)]) Hilbert Stickelberger Fr\"ohlich [4] Abel Galois Taylor (1981) 3(Taylor) (Cf [10 Theorem 21]) $F:=\mathbb{Q}$ $K/\mathbb{Q}$ $K/\mathbb{Q}$ tamely ramffied Galois NIB $F$ $\mathbb{q}$ [ $10 $ Brinkhuis Abel $K/F$

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) NIB $F$ $\mathfrak{m}$ $F(1)$ $F$ Hilbert $F(\mathfrak{m})$ $\mathfrak{m}$ $F$ mod ray class field $hp:=[f(1) : F]$ $\mathfrak{m}$ 5 tamely ramified Abel $F(\mathfrak{m})/F$ normal integral basis $F(\mathfrak{m})/F$ tamely ramified $F=\mathbb{Q}$ $F(\mathfrak{m})$ $F(\mathfrak{m})/F$ NIB $F\subset k\subset K<\subset F(\mathfrak{m})$ $K/k$ NIB [11 Theorem 53] $F=\mathbb{Q}$ $\mathfrak{m}=p\infty$ $\infty$ $K/k$ $\mathbb{q}$ NIB ($p$ - ) 2 $K/k$ NIB $F$ $F$ 2 5 $F$ 2 $F=\mathbb{Q}$ $F(\mathfrak{m})/F$ relative integral basis (RIB ) NIB $\mathfrak{m}$ 6 $F$ $F$ $F(\mathfrak{m})/F$ RIB $h_{f}$ $K:=F(\mathfrak{m})$ $\mathfrak{p}_{1}$ $\mathfrak{p}_{s}$ $\mathfrak{m}_{0}$ $n:=[k : F]$ $\mathfrak{m}$ $\cdots$ $1\leq\forall i\leq s$ $f_{i}$ $e_{i}$ $g_{i}$ $K/F$ $\mathfrak{p}_{i}$ $\mathit{0}_{k}$ $Z_{i}$ $\mathfrak{p}_{i}$ 1 $D_{K/F}$ $K/F$ $K/F$ $\forall\sigma\in Z_{i}$ $\mathfrak{p}_{i}^{\sigma}$ tamely ramified $\mathrm{o}\mathrm{r}\mathrm{d}_{\mathfrak{p}^{\sigma}}\cdot(d_{k/f})=ei-1$ $F$ $D_{K/F}$ $=i \prod_{=1}^{s}\prod_{\sigma\in Zi}\mathfrak{P}i(e_{i}-1)\sigma$ $d_{k/f}$ $N_{K/F}\mathfrak{P}_{i}^{\sigma}=N_{h }/F\mathfrak{P}i=\mathfrak{p}_{i}^{f}i$ $K/F$ (1) $d_{k/f}=nk/fd_{\mathrm{a}}r/f= \prod e\prod \mathfrak{p}_{i}^{(e:-1)}f\cdot=\prod \mathfrak{p}_{i}^{(1)f:g:}s\mathrm{e}_{i}-$ $i=1\sigma\in Z_{i}$ $i=1$

$\mathfrak{m}$ \mathfrak{n}\mathfrak{p}_{i}-1$ \dagger 71 $i(1\leq i\leq S)$ $e_{i}fig_{i}=n=[k : F(\mathrm{m}\mathfrak{p}_{i}^{-1})][F(\mathfrak{m}\mathfrak{p}^{-1}i) : F(1)]hp$ $\mathfrak{p}_{i}\{\iota $\mathfrak{p}_{i}$ $F(\mathfrak{m}\mathfrak{p}_{i}^{-}1) $ $e_{i} [K$ : $h_{f} $ figi (1) $\theta$ $d_{k/p}$ Artin $\mathrm{a}^{\nearrow}/f$ $(K=F(\theta))$ $a$ $p(\mathfrak{m}\mathfrak{p}_{i}^{-1})/f$ $d_{k/}f=dk/f(1 \theta \theta^{2} \cdots \theta^{n-1})\emptyset^{2}$ $d_{k/f}(1 \theta \theta^{2} \cdots \theta^{n-1})$ $\theta$ $\theta^{2}$ $\theta^{n-1}$ 1 $::\cdot$ $K/F$ $K/F$ RIB $\alpha$ + ([3 3 49 2 $a^{2}$ 410] ) $\text{ }$ $h_{f}$ $\alpha$ $K/F$ RIB 2 ( $K^{\mathfrak{p}}$ ) $F$ 2 5 $F$ $h_{f}>1$ 2 13 $F(\mathfrak{m})/F$ NIB $h_{f}=1$ 5 \acute \supset $F$ 2 34 $F(\mathfrak{m})/F$ 5 NIB $\iota \mathfrak{n}$ 1 7 ( $K^{\mathfrak{p}}$ ) $F$ $a_{\mathfrak{p}}:=[f(\mathfrak{p}) : F(1)]$ $a_{\mathfrak{p}}$ $F(\mathfrak{p})/F$ 2 $K/F$ $F(\mathfrak{p})/\dot{F}(1)$ 2 $M/F(1)$ $M/F$ Abel $F(1)/F$ $M/F$ $\mathrm{a} /F$ 2 $K$ $K^{\mathrm{p}}$ 2 tamely ramified $\square$ NIB 1 $F(\mathfrak{p})/F$ NIB $[F(\mathfrak{p}) : F]=2$ $p(\mathfrak{p})/f$ NIB $\mathfrak{m}=\mathfrak{p}$ NIB 5 ( ) 19 21 22 24 27 28 29 30 31 32 8 $a_{\mathfrak{p}}$ NIB $F/\mathbb{Q}$

72 9 G\ omez Ayala and Schertz [7 Satz 1] : $F=$ $\mathbb{q}(\sqrt{m})$ $F(\mathfrak{p})/F$ $K^{\mathfrak{p}}/F\text{ }$ $m=-2$ $-11$ $-19$ $-43$ $-67$ $-163(h_{F}=1)$ NIB - $F$ 2 ( 37 38 ) $F$ : $S_{4}:=$ { $xo_{f} x\in F^{\cross}$ $x\equiv 1$ mod 4 $x$ } 2 NIB $\mathfrak{p}\in S_{4}$ 10 7 NIB $\mathfrak{p}=\pi \mathit{0}_{f}$ $\sqrt{\pi})/2$ $(1-\sqrt{\pi})/2\}$ $\mathit{0}_{k^{\mathrm{p}}}$ free $\pi\in \mathit{0}_{f}$ $\pi\equiv 1$ mod 4 $\{(1+$ $\pi$ -basis $0_{F}$ 11 $\in S_{4}$ $\pi$ $a_{\mathfrak{p}}$ $F$ 2 2 $F/\mathbb{Q}$ $a_{\mathfrak{p}}$ ( 18 36 $\text{ })$ [13] G\ omez Ayala and Schertz [7] : $F$ 2 $[F(\mathfrak{p}) : F]=2$ $F(\mathfrak{p})/F$ NIB ( ; ) [7] 1996 2 25 ( ) 2 1997 3 4 2 Lemmermeyer (cf [12]) UBASIC

73 \supset Lemmermeyer 6 12 1999 1 [6] [8] [13] Section 4 $F$ 2 $F(\mathfrak{p})/F(1)$ NIB $\square$ 3 2 $F=\mathbb{Q}(\sqrt{m})$ 2 $\epsilon(>1)$ $F$ $m\in \mathbb{z}$ $m>1$ $F$ 1 4 $F$ 1 $(\mathit{0}_{f}/4_{\mathit{0}_{f}})^{\mathrm{x}}$ $\epsilon$ 13 $g$ mmod 4 $h_{f}>1$ $F(1)/F$ NIB $h_{f}=2$ $g$ $\{(1+\sqrt{\epsilon^{g}})/2 (1-\sqrt{\epsilon^{g}})/2\}$ $\mathit{0}_{f(1)}$ free -basis $0_{F}$ $h_{f}\neq 2$ $g$ $F$ ( $\mathfrak{m}$ ) $F(\mathfrak{m})/F$ NIB $(\mathit{0}_{f}/4\mathit{0}_{f})^{\cross}$ 14 $g 24$ 6 (cf [14 Proposition 1 ]) $g$ $g=1$ 3 $m=$ $395566105114146155178203$ $h_{f}=2$ $g=1$ $m=205221$ $h_{f}=2$ $g=3$ 13 5 1 2 1 2 $h_{f}$ genus theory $m$ : Case 1 $m=\ell$ $\ell$ Case 2 $m=p_{1}\ell_{2}$ $p_{1}$ Case 3 $m=p_{1}\ell_{2}$ $\ell_{i}$ $p\equiv 3$ : mod 4 $P_{1}\equiv 3$ : mod 4 $p_{2}:=2$ $P_{i}\equiv 3$ : mod 4 $(i=12)$ Case 4 $m=\ell$ $l$ $P\equiv 1$ : mod 4

74 $m=2$ ([5 Corollary of Theorem 217]) 3 $N_{F/\mathbb{Q}}\epsilon=1$ 2 $N_{F/\mathbb{Q}}\epsilon=-1$ $p$ 10 $F/\mathbb{Q}$ 15 $F/\mathbb{Q}$ $F=\mathbb{Q}(\sqrt{m})$ Case 4 2 $m\equiv 1$ mod 8 ( 2 $ a_{\mathfrak{p}}$ $I\acute{\mathrm{t}}^{\mathfrak{p}}/F$ ) 2 NIB 2{ $a_{\mathfrak{p}}$ $F(\mathfrak{p})/F$ [11 Proposition 45] 16 $F=\mathbb{Q}(\sqrt{m})$ 1 2 \sim $F/\mathbb{Q}$ Case $1\sim 3$ $p\neq 3$ Case 4 $p-1$ 2 $(p\neq 5$ $F(\mathfrak{p})/F$ $p\equiv 5$ mod 8 $p-1$ 2 ) NIB 17 $m=p=41$ $F$ Case 4 $h_{f}=1$ $[F(\mathfrak{p}) : F]=(p-1)/4=10$ 15 NIB 16 $\square$ $p(\mathfrak{p})/f$ { NIB 18 $ a_{\mathfrak{p}}$ 2 ( $N_{F/\mathbb{Q}}\epsilon=1$ { $N_{F/\mathbb{Q}}\epsilon=-1$ $p\equiv 1$ mod 4 $m\equiv 2$ ) mod 4 $\epsilon\equiv 1+2\sqrt{m}$ mod 4 NIB $\Leftrightarrow p\equiv 1$ $I\mathrm{t}^{\prime \mathfrak{p}}/f$ mod 4 NIB 19 $F$ $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}2$ $\delta:=1$ 3 mod 4 $p\equiv\delta$ $F/\mathbb{Q}$ $p$ $\cdot$ $m\equiv 2$ mod 4 $\epsilon\equiv 1+2\sqrt{m}$ mod 4 ( $m=6223886118$ ) NIB $\square$ $F/\mathbb{Q}$ $\mathfrak{p}=\pi \mathit{0}_{f}$ $\pi>0$ $\pi\in 0_{F}$ $\pi$ 1 $F/\mathbb{Q}$ $m\not\equiv 1$ (resp $\pi $ $\pi=a+b\omega(a b\in \mathbb{z})$ $m\equiv 1)$ mod 4 $\omega:=\sqrt{m}$ (resp $:=(1+\sqrt{m})/2$ ) mod 4 $M:=(m-1)/4$ $m\equiv 1$ $ a_{\mathrm{p}}$ 20 $F=\mathbb{Q}(\sqrt{m})$ Case 1 2 2 ( $p\equiv 1$ mod 8 ) (I) Case 1 NIB

mod 75 (II) $\epsilon$ Case 2 $a$ 4 2 (i) $\epsilon\equiv-1\mathrm{m}\circ \mathrm{d}4$ $p\equiv 1$ (resp ) $\equiv 9$ $\mathrm{m}\circ \mathrm{d}16$ $\Leftrightarrow a\equiv\pm 1$ $\equiv\pm 3$ NIB (resp ) mod 8 $\epsilon\equiv 1+2\sqrt{m}\mathrm{m}\circ \mathrm{d}4$ $\Leftrightarrow a\equiv 1$ (ii) NIB mod 4 21 (Case 2; (II-i)) $m=2:7$ $h_{f}=1$ $\epsilon=15+4\sqrt{m}\equiv-1$ mod 4 22 (Case 2; (II-ii)) $m=2\cdot 3$ $h_{f}=1$ $\epsilon=5+2\sqrt{m}\equiv 1+2\sqrt{m}$ mod 4 23 $F=\mathbb{Q}(\sqrt{m})$ $ a_{\mathfrak{p}}$ $p_{1}$ Case 3 2 ( \mathrm{d}p$ $\epsilon$ $\mathrm{m}\circ $\pi >0$ ) mod 4 3 (i) $\epsilon\equiv-1$ mod 4 $m\equiv 1$ mod 8 $m\equiv 5$ mod 8 $ \supset$ NIB (ii) $\epsilon\equiv M+1+\omega$ $-(M+\omega)$ NIB $b$ mod 4 NIB

NIB 76 24 (Case 3; $(\mathrm{i})$) $m=3\cdot $87+16\omega\equiv-1$ mod 4 47=141\equiv 5$ mod 8 $h_{f}=1$ $\epsilon=$ $\epsilon$ $ a_{\mathfrak{p}}$ 25 $F=\mathbb{Q}(\sqrt{m})$ Case 4 2 mod 4 3 (i) $\epsilon\equiv(1-2m)\sqrt{m}$ mod 4 $(1-2M)\sqrt{m}$ mod 4 $I\acute{\mathrm{t}}^{\mathfrak{p}}/F$ $\Leftrightarrow\pi\equiv 1$ $\epsilon\equiv M-1+\omega$ (ii) $M-2+\omega \mathrm{m}\circ \mathrm{d}4$ $m\equiv 5$ mod 8 NIB $\Leftrightarrow\pi\equiv 1$ $M+\omega$ $-(M+1+\omega)$ $1+2\omega$ $M-2+\omega$ $M-1+\omega$ mod 4 26 $a_{\mathfrak{p}}$ 20 23 $a_{\mathfrak{p}}$ Case Case 4 $(\mathrm{i})$ 27 (Case 4; ) $m=409\equiv 1$ mod 8 $h_{f}=1$ 106387620283+ $\epsilon=$ $11068353370_{\omega}\equiv 3+2\omega\equiv\sqrt{m}$ mod 4

) 77 28 (Case 4; $(\mathrm{i})$) $m=37\equiv $1+2\omega\equiv-\sqrt{m}$ mod 4 5$ mod 8 $h_{f}=1$ $\epsilon=5+2\omega\equiv$ $(\mathrm{i}\mathrm{i})$ 29 (Case 4; $m=2293\equiv 5$ mod 16 $h_{f}=1$ $\epsilon=$ $21890901812+933807029\omega\equiv\omega$ mod 4

) 78 $(\mathrm{i}\mathrm{i})$ 30 (Case 4; $m=2749\equiv 13$ mod 16 $h_{f}=1$ $\epsilon=$ $57581648522+2239184645\omega\equiv 2+\omega$ mod 4 31 (Case 4; $(\mathrm{i}\mathrm{i})$) $m=1621\equiv 5$ mod 16 $h_{f}=1$ $\epsilon=$ $2351907622159+119806883557\omega\equiv-1+\omega$ mod 4

) 79 $(\mathrm{i}\mathrm{i})$ 32 (Case 4; $m=1549\equiv 13$ mod 16 $+17199418961\omega\equiv 1+\omega$ 329861957297$\cdot$ mod 4 $h_{f}=1$ $\epsilon=$ 33 $ a_{\mathfrak{p}}$ $m=2$ 2 NIB 4 2 $F=\mathbb{Q}(\sqrt{m})$ $m\in \mathbb{z}$ 2 $m<0$ 34 $F$ 2 $F(1)/F$ NIB 7 $F$ $\mathfrak{m}$ ( ) $F(\uparrow \mathfrak{n})/f$ NIB 34 5 $h_{f}$ 10 5 10 $h_{f}$ genus theory $m=-1$ $-2$ $-\ell$ $p$ $\equiv 3$ mod 4 35 $m:=-1$ $-3$ $p$ $ a_{\mathfrak{p}}$ (I) 2 $F/\mathbb{Q}$ $m=-1$ (resp $=-3$) $p\equiv 1$ mod 8(resp $p\equiv 1$ mod 12) NIB (II)2 $ a_{\mathfrak{p}}$

$\mathrm{i}c$ fields Ayala Ayala 80 \sim $F/\mathbb{Q}$ 36 $ a_{\mathfrak{p}}$ 2 37 $m=-2$ NIB $F/\mathbb{Q}$ NIB $m=-\ell$ : $l$ $\ell\equiv 3$ mod 4 $ a_{\mathfrak{p}}$ $I\mathrm{f}^{\mathfrak{p}}/F$ 2 : (2) $p_{0}\equiv 1$ mod 4 $p> \frac{p_{0}-1}{4}$ $( \frac{p}{p_{0}})=1$ $p_{0}$ 3 38 $(\ell_{p_{0}})=(115)$ $(195)$ $(4313)$ $(6717)$ $(16341)$ (2) 37 G\ omez Ayala and Schertz [7 $(\ell_{p0})$ Satz 1] 39 $m\equiv 1$ mod 8 $p$ $\mathfrak{p}\text{ }F/\mathbb{Q}$ 2 $ a_{\mathrm{p}}\leftrightarrow p\equiv 1$ mod 4 $ a_{\mathfrak{p}}$ 2 NIB \acute \supset $m=-7$ $p\equiv 1$ mod 4 $h_{f}=1$ NIB REFERENCES 1 J Brinkhuis Unramified abelian extensions of CM-fields and their Galois module structure Bull London Math Soc 24 (1992) 236-242 2 On the Galois module structure over CM-fields Manuscripta Math 75 (1992) 333-347 3 ( ) 1975 4 A Fr\"ohlich Stickelberger without Gauss sums in Algebraic number fields Proceedings of The Durham Symposium 1975 Academic Press London 1977 589-607 5 Central extensions Galois groups and ideal class groups of number fields Contemporary Mathematics Volume 24 American Mathematical Society 1983 $\mathrm{g}6\mathrm{m}\mathrm{e}\mathrm{z}$ 6 E J Structure galoisienne et corps de classes de rayon de conducteur 2 Acta Arith 72 (1995) 375-383 $\mathrm{g}\mathrm{o}^{\text{ }}\mathrm{m}e\mathrm{z}$ 7 E J and R Schertz Eine Bemerkung zur Galoismodulstruktur in $s_{t}rahik\iota a\delta senk\ddot{o}rpern\tilde{u}ber$ imagin\"ar-quadratis chen $Zahlk_{\ddot{O}}rpern$ J Number Theory 44 (1993) 41-46 8 C Greither On normal integral bases in ray class fields over imaginary quadrat- Acta Arith 78 (1997) 315-329 9 D Hilbert Die Theorie der algebraischer Gesam Abhandl I 66- $Zahlk_{\ddot{O}rp}er$ 363 (Jber Deutschen Math-Ver 4 (1897) 175-546) 10 F Kawamoto $S$- normal basis 942 (1996) 98-111

$\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{i}\mathrm{n}/\mathrm{n}\mathrm{e}\mathrm{w}$ York de 81 11 On normal bases of some ring extensions in number fields I Tokyo J Math 19 (1996) 129446 1122 remark oonn normal integral bases ooff ray ccllaassss fields oovveerr $A$ $qquuaaddrraati\text{ }C$ fi ellds (( )) VIII 1997 13-21 13 On quadratic subextensions of ray class fields of quadratic fields mod preprint 14 A Srivastav and S Venkataraman Unramified quadratic extensions of real quadratic normal integral bases and 2-adic -functions J Number Theory 67 (1997) 139-145 $field_{s_{p}}$ $L$ 15 L Whashington Stickelberger s theorem for cyclotomic in the sprit of $field_{s_{f}}$ $\mathrm{t}\mathrm{h}e^{\text{ }}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{e}$ $\mathrm{s}$ Kummer and Thaine Nombres (Quebec 1987) de Gruyter 1989 990-993