untitled

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

i

Microsoft PowerPoint - 島田美帆.ppt

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

OHO.dvi


05Mar2001_tune.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

4/15 No.

02-量子力学の復習

Gmech08.dvi

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

EGunGPU

chap03.dvi

Mott散乱によるParity対称性の破れを検証

Undulator.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

目的 医学利用のための小型高フラックスX線源の開発 例えば動的血管造影では ヨウ素(I)のKエッジ keV付近のエネルギーの X線を利用 XCOM: Photon Cross Section Database

Donald Carl J. Choi, β ( )


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

Canvas-tr01(title).cv3

Gmech08.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Part () () Γ Part ,

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

A

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

PDF

COE

TOP URL 1

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)



Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

³ÎΨÏÀ

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Report10.dvi

Note.tex 2008/09/19( )

X線散乱と放射光科学

all.dvi

液晶の物理1:連続体理論(弾性,粘性)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

吸収分光.PDF

QMI_10.dvi

main.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2



The Physics of Atmospheres CAPTER :

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

sec13.dvi

2000年度『数学展望 I』講義録

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

08-Note2-web

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 2 2 (Dielecrics) Maxwell ( ) D H

A 99% MS-Free Presentation

news

Drift Chamber

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

notekiso1_09.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

pdf

A

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

MOSFET HiSIM HiSIM2 1

Transcription:

SPring-8 RFgun JASRI/SPring-8 6..7

Contents.. 3.. 5. 6. 7. 8.

. 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E = + v γm c Runge-Kutta method

6 ε x βγ = < x >< x > < x x > Cavity MAFIA cavity

. Envelop equation Lawson s equation r d = ei dz ßffl m C 3 fl 3 fi 3 r CW

Transverse x r e- z Ex E Pencil beam Ez v E = πɛ γ Longitudinal er [ ] 3/ r v r c E x = x Q πɛ x Ex By. v z= l + x γ v z z E z = ρ ɛ ( ) z + R γ R γ z Envelop equation dv dt = e γm ( v B + E s (v E) c v ) d x ds = d z ds = eq πɛ mc γ 3 β x q z + x eq πɛ m c γ 3 β x z ( γ ) z + x γ x γ z

envelop equation Transverse Longitudinal Energy = MeV, φ = mm, pulse width = 3 mm Energy = MeV, φ = mm, pulse width = 3 mm Beam Radius (mm) 35 3 5 5 5 Envelop equation Simulation code...3..5.6.7.8.9 Pulse Width (mm) 3 5 5 5 Envelop equation Simulation code...3..5.6.7.8.9 Longitudinal Traveling length (m) Longitudinal Traveling length (m)

RFgun envelop equation d x dt = eq πɛ m γ 3 x E x rf = E cos (ωt φ) B y rf = r c ωe sin (ωt φ) e β (t) = r γ (t) = m E (sin(ωt φ)+sin φ) c ω + β(t) + l + x γ eβc γm B y rf + e (sin(ωt φ)+sin m E φ) eβ γm c E z rf dx dt Transverse Longitudinal B z field..8.6.. Real Cavity Perfect pillbox type 3 5 6 z (mm) cavitybz cavity pillbox Beam size (mm) Energy = -3.6 MeV, φ = mm, pulse width = 3mm 8 6 Envelop equation Simulation.5.5.5 3 3.5 Time (nsec)

3. To dummy load Solenoid coil Screen monitor Faraday cup RF Cavity Bending magnet Cu-Cathode degrees X-Y slit Wall-current monitor UV-Laser path cm

Emittance (πmm mrad) 35 3 5 5 5 Data No. (X emittance) Data No. (Y emittance) Data No. (X emittance) Data No. (Y emittance) X emittance(simulation) Y emittance(simulation) Parameters (for both experiment & our simulation ) Maximum field on the cathode 35 MV/m Initial RF phase 85 degree First solenoid coil 56 Gauss Second solenoid coil 78 Gauss Laser incident angle 66 degrees Laser spot distribution Gaussian like figure Laser spot radius.3 mm (σ) Laser temporal length 5 ps (FWHM)...6.8.. Charge of electron beam (nc/bunch).8nc/bunch.8nc/bunch Charge

Emittance (πmm mrad) 8 7 6 5 3 x y (<x> +<y> )/...6.8 Charge (nc/bunch) Emittance (πmm mrad) 9 8 7 6 5 3 x y...3..5.6.7.8.9 Longitudinal position (m) X,Y

cavity

. Charge Beam radius Bunch length : C/bunch : 6 mm uniform : ps Emittance (πmm.mrad) 8 6 6 8 Distance from Cathode (mm) 3 5 7 5 3 5 Emittance (πmm.mrad) 6 5.5 5.5 3.5 3 Particle Number x y 5 5mm 7 Grape term nc 3 E A = πε γ r er v B r c 3

5. Surface of the Cathode Traveling length from the cathode (mm)..8.6.. E = 5 MV/m E = MV/m E = 5 MV/m 6 8 6 8 Time (ps) Transverse position (mm).5 -.5 - - -.5 - -.5.5 dv dt = e γm Longitudinal position from Cathode (mm) ( v B + E ) (v E) c v E e (sin (ωt φ)+sinφ) v(t) = c c ω + E e (sin (ωt φ)+sinφ)

3 radial Emittance (πmm mrad) 5 5 5 Image On.nC/bunch Image Off.nC/bunch 5 5 Longitudinal position (mm)

Transverse position (mm) 3.5 3.5.5.5.5.5 Longitudinal position from Cathode(mm)

E = er n πɛ γn [ ] 3/ R n V n R n c VrΔt cδt -vn -vr -vr vn E = πɛ γ r er r [ ] 3/ R r V r R r c Rr Rn RF DC Emittance (πmm mrad) 5.5 3.5 3.5.5.5 Normal.nC/bunch Retarded point.nc/bunch Normal.nC/bunch Retarded point.nc/bunch.5..5..5.3.35 Longitudinal position (m)

6. Emittance (πmm mrad) 6 8 Our code - with random PARMELA Our code - even intervals..8. Charge of electron beam (nc/bunch) x (mm) Initial Particle Position with Random Numbers.5 -.5 - -.8 -.6 -. -.. z (m) x (mm) Output Particle Position with Random Numbers - -.667.668.669.67.67.67.673 z (m) x (mm) Initial Particle Position aligned at even intervals.5 -.5 - -.8 -.6 -. -.. z (m) x (mm) Output Particle Position alined at even intervals - -.66.665.666.667.668.669.67 z (m)

7. Keeping particle numbers of Increasing particle numbers as charge grows Emittance (πmm mrad) 8 6.nC.nC.nC 5...6.8 Charge (nc)

Weak Field

8. SPring-8 RFgun 3