4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Similar documents
IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

28 Horizontal angle correction using straight line detection in an equirectangular image

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

2 Fig D human model. 1 Fig. 1 The flow of proposed method )9)10) 2.2 3)4)7) 5)11)12)13)14) TOF 1 3 TOF 3 2 c 2011 Information

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

ohpmain.dvi

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System


[1] SBS [2] SBS Random Forests[3] Random Forests ii

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta


IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

,,.,.,,.,.,.,.,,.,..,,,, i

Microsoft Word - toyoshima-deim2011.doc

Fig. 1. Example of characters superimposed on delivery slip.

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

VRSJ-SIG-MR_okada_79dce8c8.pdf

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

JFE.dvi

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

28 TCG SURF Card recognition using SURF in TCG play video

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc


14 2 5

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

鉄鋼協会プレゼン

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Sobel Canny i

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IPSJ SIG Technical Report Vol.2014-GN-90 No.16 Vol.2014-CDS-9 No.16 Vol.2014-DCC-6 No /1/24 1,a) 2,b) 2,c) 1,d) QUMARION QUMARION Kinect Kinect

Spin Image [3] 3D Shape Context [4] Spin Image 2 3D Shape Context Shape Index[5] Local Surface Patch[6] DAI [7], [8] [9], [10] Reference Frame SHO[11]

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

本文6(599) (Page 601)

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-CVIM-186 No /3/15 EMD 1,a) SIFT. SIFT Bag-of-keypoints. SIFT SIFT.. Earth Mover s Distance

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

IPSJ SIG Technical Report Taubin Ellipse Fitting by Hyperaccurate Least Squares Yuuki Iwamoto, 1 Prasanna Rangarajan 2 and Kenichi Kanatani

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

(MIRU2010) Geometric Context Randomized Trees Geometric Context Rand

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

2009/9 Vol. J92 D No. 9 HTML [3] Microsoft PowerPoint Apple Keynote OpenOffice Impress XML 4 1 (A) (C) (F) Fig. 1 1 An example of slide i

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii

untitled

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

24 Region-Based Image Retrieval using Fuzzy Clustering

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

untitled

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

GPGPU

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

Microsoft PowerPoint - SSII_harada pptx

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

カルマンフィルターによるベータ推定( )

01.Œk’ì/“²fi¡*

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

untitled

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

Transcription:

x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke Imamura 2 and Hideo Hashimoto 2 The present paper proposed a moving object extraction based on x-means clustering which is capable of providing the number of cluster automatically The proposed technique is an extended k-means clustering and can determine the optimal number of clusters by using a stopping rule based on Bayesian Information Criterion(BIC). In the proposed method, the feature points are selected in each segmented region obtained by morphological watershed algorithm, and x-means clustering classifies these feature points based on their affine motion parameters. Suitable number of moving objects are estimated based on clustering result of the feature points. 1 Graduate school of Natural Science and Technology, Kanazawa University 2 1. MPEG-4 1) 5) 3) 4) 5) Morphological Watershed x-means x-means 2. x-means x-means 6) k-means 7) 1 Bayesian Information Criterion(BIC) 8) n p 9) 1. k 0 ( 2) 2. k = k 0 k-means C 1, C 2,..., C k0 3. i = 1, 2,, k 0 4 9 Institute of Science and Engineering, Kanazawa University 1 c 2010 Information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q log n i (2) ˆθ i = [ ˆµ i, ˆV i ] p µ i p V i p p q q = 2p x i C i p n i C i L L( ) = f( ) 6. C 1 i, C 2 i θ 1 i, θ 2 i p 2 g(θ 1 i, θ 2 i ; x) = α i [f(θ 1 i ; x)] δ i [f(θ 2 i ; x)] 1 δ i (3) { 1, x i Ci 1 δ i = 0, x i Ci 2 α i α i = 0.5/K(β i ) (5) K( ) β i f(θ 1 i ; x) f(θi 2 ; x) µ1 µ 2 β i = 2 V 1 + V 2 2 BIC BIC = 2 log L ( ˆθ i ; xi Ci) + q log n i (7) ˆθ i = [ ˆθ 1 i, ˆθ 2 i ] p (1) (4) (6) p 2 q = 2 2p = 4p 7. BIC > BIC 2 2 C i Ci 1 Ci 2 p BIC 4 8. BIC BIC 2 C i 1 2 7 C i Ci 2 4 9. C i 2 4 8 2 C i 10. k 0 2 11. 3. x-means x-means 3.1 Morphological Watershed Watershed Watershed 10) Watershed Morphological Filter 11)12) Watershed 3.2 l 2 c 2010 Information

S r l min = log 2 100 S r ( ) 1 P max P max 100 P DBD(P ) = {I t (P i ) I t 1 (P i + d)} 2 (9) P i B(P ) I t (P ) P I t 1 (P + d) P d = (d x, d y) B(P ) P 15 15 pixel ±7 pixel Gauss Newton Gauss Newton (v x (x, y), v y (x, y)) v x(x, y) = ax + by + c (10) v y (x, y) = dx + ey + f (11) a, b, d, e c, f 13) Gauss Newton { DBD(P ) > µ e + σ e σ 2 I > T I (12) µ e σ e σ 2 I (8) T I 3.3 x-means x-means p = 6 p 1 3.4 Voting x-means Watershed 4. 14). Penguin and Mouse( 320 240 pixel) 2 1 Morphological Watershed 121 2 3 c 2010 Information

1 (121 ) Fig. 1 Region segmentation result (121 regions). 2 (6,254 ) Fig. 2 Feature points and estimated motions(6,254 points). 1 x-means Table 1 Clustering result by x-means. () Voting 1 3482 10 (7) 2 (12) 11 73 3 (36) 12 417 4 (16) 13 (41) 5 63 14 (23) 6 (50) 15 (45) 7 (43) 16 (12) 8 (22) 17 (45) 9 161 18 1082 3 Fig. 3 Accurate moving object traction result. 6,254 624 1 x-means 18 3 4 5 2 / 97.5% 95.9% 3 Uncovered Background Foreman( 352 288 pixel) Foreman 6 Morphological Watershed 100 7 5,333 461 3 x-means 4 Fig. 4 Moving object extraction result by the region merging method. Table 2 5 Fig. 5 Moving object extraction result by the proposed method. 2 Evaluation of moving objects extraction. =121 =76800 [%] 4 72455/4345 116/5 95.9 5 76274/526 118/3 97.5 4 c 2010 Information

6 100 Fig. 6 Region segmentation result (100 regions). 7 5,333 Fig. 7 Feature points and estimated motions(5,333 points). 3 x-means Table 3 Clustering result by x-means. () Voting 1 1857 5 (21) 2 109 6 140 3 91 7 (34) 4 (33) 8 2644 8 Fig. 8 Accurate moving object extraction result. 8 8 9 10 4 97.0% 90.0% 3 3,. Penguin and Mouse 3 5 Foreman 2 4 5. x-means x-means Watershed 9 Fig. 9 Moving object extraction result by the region merging method. Table 4 10 Fig. 10 Moving object extraction result by the proposed method. 4 Evaluation of moving objects extraction. =100 =101376 [%] 3 91055/10321 90/10 90.0 4 100481/895 97/3 97.0 5 c 2010 Information

Uncovered Backgound 12) Wang, D.: A Multiscale Gradient Algorithm for Image Segmentation Using Watersheds, Pattern Recongnition, Vol.30, No.12, pp.2043 2052 (1997). 13) Wang, Y.A. and Adelson, H.: Representing Moving Images with Layers, IEEE Trans. Image Process., Vol.3, No.5, pp.625 638 (1994). 14) Vol.63, No.11, pp.1625 1629 (2009). 1) Schoeneman, T. and Cremers, D.: Near Real-time Motion Segmentation Using Graph Cuts, Springer, LNCS, Vol.4174, pp.455 464 (2006). 2) Yang, W., Loe, K.-F., Tan, T., and Jian-Kang, W.: Spatiotemporal Video Segmentation based on Graphical Models, IEEE Trans. Image Process., Vol.14, No.7, pp.937 947 (2005). 3) Rousson, M. and Paragios, N.: Prior Knowledge, Level Set Representations and Visual Grouping, International Journal of Computer Vision, Vol.76, No.3, pp.231 243 (2008). 4) Chen, L.-H., Lai, Y.-C., Su, C.-W. and Liao, H.-Y.M.: Extraction of Video Object with Complex Motion, Pattern Recognition Letters, Vol.25, No.11, pp.1285 1291 (2004). 5) Mochieni, F., Bhattacharjee, S. and Kunt, M.: Spatiotemporal Segmentation Based on Region Merging, IEEE Trans. Pattern Anal. Machine Intell., Vol.20, No.9, pp. 897 915 (1998). 6) Pelleg, D. and Moore, A.: X-means: Extended K-means with Efficient Estimation of the number of Clusters, Proc. of the 17th International Conference on Machine Learning, pp.727 734 (2000). 7) Hartigan, J.A. and Wong, M.A.: A K-means Clustering Algorithm, Applied Statistics, Vol.28, pp.100 108 (1979). 8) Jolion, j.m., Meer, P. and Bataouche, S.: Robust Clustering with applications in computer vision, IEEE Trans. Pattern Anal. Machine Intell., Vol. 13, No. 8, pp. 791 802 (1991). 9) x-means k-means Vol.18, No.1, pp.3 13 (2006). 10) Vincent, L. and Soille, P.: Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations, IEEE Trans. Pattern Anal. Machine Intell., Vol.13, No.6, pp.583 598 (1991). 11) Vincent, D.: Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Alogorithms, IEEE Trans. Image Process., Vol.2, No.2, pp. 177 201 (1993). 6 c 2010 Information