susy.dvi

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

201711grade1ouyou.pdf

量子力学 問題

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Dynkin Serre Weyl

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Note.tex 2008/09/19( )

四変数基本対称式の解放

量子力学A

日本内科学会雑誌第102巻第4号

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

SUSY DWs

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

,,..,. 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

基礎数学I

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

第86回日本感染症学会総会学術集会後抄録(I)

I

arxiv: v1(astro-ph.co)

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

all.dvi

CVMに基づくNi-Al合金の

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) ) AGD 2) 7) 1

newmain.dvi

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

SO(2)

main.dvi

ohpmain.dvi

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b


1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

meiji_resume_1.PDF

tnbp59-21_Web:P2/ky132379509610002944

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

koji07-01.dvi

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

QMII_10.dvi


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

( )

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

: , 2.0, 3.0, 2.0, (%) ( 2.

パーキンソン病治療ガイドライン2002

研修コーナー


『共形場理論』

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

構造と連続体の力学基礎

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

日本内科学会雑誌第97巻第7号

0406_total.pdf

日本内科学会雑誌第98巻第4号

7

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

抄録/抄録1    (1)V

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B



Microsoft Word - 信号処理3.doc

Lecture 12. Properties of Expanders

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

i

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

液晶の物理1:連続体理論(弾性,粘性)

TOP URL 1

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a


Transcription:

1 Chapter 1 Why supper symmetry?

2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0 [P µ,q A α ] = [P µ,q αa ] = 0 [P µ,p n ] = 0 Q SUSY P α,β α β µ,ν A,B ( SUSY N=1 SUSY A B 2.1 SUSY boson fermion N F +1-1 ( 1 NF Q α ( 1 NF Q α state = Q α ( 1 NF state (2.2 Q state ( 1 NF -1 (2.3 = ( 1 NF Q α boson = ( 1 NF fermion = 1 fermion ( 1 NF = Q α ( 1 NF boson

3 = Q α boson ( 1 NF = fermion ( 1 NF boson fermion Tr[( 1 NF {Q A α,q βb }] = Tr[( 1 NF (Q A αq βb +Q βb Q A α] 2 (2.3 {Q A α,q βb } = 2σ µ α β P µδ A B = Tr[ Q A α ( 1NF Q βb +Q A α ( 1NF Q βb ] = 0 (2.3 0 = Tr[( 1 NF {Q A α,q βb }] = 2σ µ α β δa B Tr[( 1NF P µ ] Tr[( 1 NF ] = 0 fermion boson susy boson fermion

4 Chapter 3 Component fileds 3.1 4 spinor spinor ( ψ 4d ψ γ 0 = ψ 4d = ( ψα η β ψα T (η β ( 0 1 ( T = (η β ( 1 0 T ψα T η β ψ α 2 (SL(2,C ( 4! ψ 4d ( η β ψ α ψ 4d = ( ψα η β (ψ α ψ α (η α η α 2 spinor ( ψ 4d ψ 4d = η α ψ β ( ψ α η β = η α ψ α +ψ βη β η α ψ α η α ψ α ψ α η α ψ α η α \ / (3.1 SL(2,C SU(2 ψ 1 η 2 ψ 2 η 1 = ( ψ 1 ψ 2 ( 0 1 1 0 ( η1 η 2 (3.1 ( ψ 1 ( a b ψ 2 b a ( 0 1 1 0 ( a b b a ( η1 η 2 = ( ψ 1 ψ 2 ( 0 a 2 + b 2 a 2 b 2 0 ( η1 η 2

5 = ( ψ 1 ψ 2 ( 0 1 1 0 ( η1 η 2 SU(2 ( a 2 + b 2 = 1 ( ( 0 1 0 1 ε ab = εȧḃ = ε 1 0 ab = εȧḃ = (3.2 1 0 ψ α = ε αβ ψ β ψ α = ε αβ ψ β (3.2 αβ fermion -1 (3.1 η α ψ α +ψ βη β = ε αβ η β ψ a +ε β α ψ α η β ψη ( ( ( 0 1 ψ1 0 1 = (η 1 η 2 1 0 ψ (η 1 η 2 2 1 0 ( ψ 1 ψ 2 = (η 1 ψ 2 η 2 ψ 1 ( η 1 ψ 2 +η 2 ψ 1 σ αα = ε α βε αβ σ β β = ε αβ σ β βε β α = σ α α (3.3-1 σ ( (σ α β σ β α 3.2 Algebra susy parameter space super filed component fileld component filed component filed susy multiplet A(x ψ(x ψ(x տ ւ multiplet SUSY F(x A(x,ψ(x component susy parameter odd {ξ α,ξ β } = {ξ α,q β } = 0 [P µ,ξ α ] = 0 odd even SUSY [ξ α Q α, ξ βq β ] = ξ α Q α ξ βq β ξ βq β ξ α Q α = ξ α Q α Q β ξ β ξ α Q β Qα ξ β

6 = ξ α Q α ε β δq δε β λ ξ λ ε αδ ξ δ Q βε αλ Q λ ξ β ε β δε β λ = ε δ βε β λ = δ δ λ ε αδ ε αλ = ε δα ε αλ = δ λ δ = ξ α Q α Q δ ξ λ +ξ α Q βq λ ξ β = ξ α β {Q α,q δ}ξ = ξ α 2σ µ α β P µξ β [ξ α Q α,ξ β Q β ] = ξ α Q α ξ β Q β ξ β Q β ξ α Q α = ξ α Q α Q β ξ β ξ α Q β Q α ξ β = ξ α {Q α,q β }ξ β = 0 [ξ α Q α,ξ βq β ] = 0 [P µ,ξ α Q α ] = [P µ,ξ α Q. α ] = 0 ψ α η α ψ α η α [a,b]=ab-ba -1 odd [ξq,ξq] = 2ξσ µ ξp µ [ξq,ξq] = [ξq,ξq] = [P µ,ξq] = [P µ,ξq] = 0 3.3 component filed SUSY susy mass susy component filed ( componentfiled component filed multiplet (A,ψA scalar filed ψ spinor filed ( ( ( ( A e ψ (ξq+ξq A e = (ξq+ξq A (1+(ξQ+ξQA = ψ e (ξq+ξq ψ (1+(ξQ+ξQψ SUSY SUSY A [e (ξq+ξq e (ηq+ηq e (ηq+ηq e (ξq+ξq ]A = [(1+(ξQ+ξQ(1+(ηQ+ηQ (1+(ηQ+ηQ(1+(ξQ+ξQ]A = [(1+ξQ+ξQ+ηQ+ηQ+(ξQ+ξQ(ηQ+ηQ (1+ξQ+ξQ+ηQ+ηQ+(ηQ+ηQ(ξQ+ξQ]A = [ξq,ηq]a+[ξq,ηq]a+[ξq,ηq]a+[ξq,ηq]a = (2P µ ξσ µ η 2P µ ησ µ ξa (3.4

7 2 susy 2 susy mass 1 Q mass 1/2 Q mass 1/2 scalar filed A spinor filed ψ δ ξ A (ξq+ξqa 2ξψ δ ξ ψ = (ξq+ξqψ = 2σ µ ξp µ A+ 2ξF ξqa 2ξψ (3.5 ξqψ 2ξF ξqa 0 ξqψ 2σ µ ξp µ A F vector filed mass 1 A ψ A ψ mass 1 F F (3.4 [e (ξq+ξq e (ηq+ηq e (ηq+ηq e (ξq+ξq ]ψ = [ξq,ηq]ψ +[ξq,ηq]ψ = ξqηqψ ηqξqψ +ξqηqψ ηqξqψ = ξqη 2σ µ P µ A ηqξ 2F +ξqη 2F ηqξ 2σ µ P µ A = ξqη 2σ µ P µ A ηqξ 2F +ξqη 2F ηqξ 2σ µ P µ A δ ξ F = 2ξσ µ P µ ψ (3.6 Dirc spinor ( ( ( L = ψ 4d (i µ γ µ µψ 4d = η α ψ β i 0 (σ µ a β (σ µ βα 0 µ µ ( ψα η β = 0 L = ψ βi(σ µ βα µ ψ α +η α (i(σ µ α β µ η β µη α ψ α µψ βη β ( ψ,η globalu(1 L U(1 R symmmetry L ψ i(σ µ βα µ ψ α +µη β = 0 η i(σ µ α β µ η β µψ α = 0

8 odd (AB = A B AB = A B = AB spinor i(σ µ βα µ ψ α +µψ β = 0 F (3.6 δ ξ F = i 2ξ β(σ µ βα µ ψ α = 2µξ βψ β (3.5 δ ξ F = (ξ α Q α +ξ α Q α F = 2µξ βψ β F = ma (

9 ξ α Q α A 2ξ α ψ α (3.7 ξ α Q α A 0 (3.8 (3.8 Q α ξ α A = 0 (3.7 Q α ξ α A = ξ α Q α A = 2ξ α ψ α (ξ α Q α +ξ α Q α ψ β 2ξ β F +i 2ξ α (σ µ αβ µ A (3.9 (ξ α Q α +ξ α Q α ψ β 2ξ α ε αβ F i 2(σ µ β α ξ α µ A (3.10 (3.9 (ξ α Q α +ξ α Q α ψ β = 2ξ βf i 2((σ µ αβ ξ α µ A (3.10 i 2((σ µ βα ξ α µ A + 2ξ β F (ξ α Q α +ξ α Q α ψ β = 2ξ α ε α βf +i 2ξ α ((σ µ β α µ A = 2ξ α ε α βf +i 2ξ α (σ µ α β µ A (ξ α Q α +ξ α Q α F i 2ξ α (σ µ αβ µ ψ β (3.11 (3.11 (ξ α Q α +ξ α Q α F = i 2 µ ψ β((σ µ αβ ξ α = i 2 µ ψ β(σ µ βα ξ α mass [A] = 1 [ψ] = 3 2 [F] = [ µa ] = 2 [ µ ψ] = 5 2 1 susy mass 2 m mass mass component filed 3.4 SUSY (component filed component filed free susy L = i µ ψσ µ ψ +A A+F F +m(af +A F 1 2 ψψ 1 2 ψψ susy susy

10 iσ µ µ ψ +mψ = 0 F +ma = 0 A+mF = 0 2.1 SUSY fermion boson fermion :spinor 2 boson :scalar A,A* ψ 2 ψ,ψ L =: L : fermion boson

11 Chapter 4 Super fields super filed component field susy super field F(x,θ,θ F(x,θ,θ f(x+θφ(x+θχ(x+θθm(x+θθn(x+θσ µ θv µ (x+θθθλ(x+θθθψ(x+θθθθd(x θ,θ component field super F θ,θ odd 2 spinor 2 θθθ super field super space super space x,θ,θ susy G(x,θ,θ exp( ix µ p µ +iθq+iθq (4.1 susy θ,θ Hausdroff s formulae A e B = e A+B+1[A,B]+ 2 G(0,ξ,ξG(x,θ,θ = e (iξq+iξq e ( ixµ p µ+iθq+iθq = e (iξq+iξq ixµ p µ+iθq+iθq+ 1 2 [iξq+iξq, ixµ p µ+iθq+iθq] = e (iξq+iξq ixµ p µ+iθq+iθq+ 1 2 [iξq+iξq,iθq+iθq] = e (iξq+iξq ixµ p µ+iθq+iθq+ 1 2 [iξq,iθq]+1 2 [iξq,iθq] = e (iξq+iξq ixµ p µ+iθq+iθq ξσ µ θp µ+θσ µ ξp µ = e (iξq+iξq+iθq+iθq ipµ(xµ +iξσ µ θ iθσ µ ξ = G(x µ +iθσ µ ξ iξσ µ θ,θ +ξ,θ +ξ susy super space g(ξ,ξ : (x µ,θ,θ (x µ +iθσ µ ξ iξσ µ θ,θ+ξ,θ +ξ (4.2 susy θ,θ susy super space ξq+ξq = ξ α ( θ α iσµ α α θ α µ +ξ α ( θ α iθ α σ µ α β ε β α µ σ α βξ β = ξ α σ α βε β α Q α Q α Q α Q α { } Qα,Q α = 2iσ µ α α µ (4.3 { } {Q α,q β } = = 0 Q α,q β Q ε α β = θ α θ β Q diff α θ α iσµ α α θ α µ g(ξ,ξ e ξqdiff diff +ξq

= Q α diff θ α +iθα σ µ α α µ { } { Q diff α,q diff α f(x,θ,θ = θ α iσµ α α θ α µ, } θ α +iθα σ µ α α µ f(x,θ,θ ( { } { } { θ α, θ α +i θ α,θα σ µ α α µ +i σ µ α α θ α µ, = θ α ( { } { i θ α,θα σ µ α α µ +i σ µ α α θ α µ, ( = i(σ µ α α µ θ α σ µ α α µ θ α +θα σ µ α α µ θ α +i ( { = iσ µ α α µ +i σ µ α α θ α µ, θ α } { + σ µ α α θ α µ,θ α σ µ α α µ} f(x,θ,θ θ α } f(x,θ,θ { σ µ α α θ α µ, } f(x,θ,θ = 2iσ µ α α µf(x,θ,θ = 2σ µ α α P µf(x,θ,θ θ α } f(x,θ,θ! [2.1] SUSY SUSY G(0,ξ,ξ [4.1] g(ξ,ξ [4.2] G(0,ξ 1,ξ 1 G(0,ξ 2,ξ 2 = g(ξ 2,ξ 2 g(ξ 1,ξ 1 ( SUSY [2.1] D α θ α +iσµ α α θ α µ D α θ α iθα σ µ α α µ SUSY { { },Dα,D α f(x,θ,θ = θ α +iσµ α α θ α µ, } θ α iθα σ µ α α µ f(x,θ,θ = ( { } { i θ α,θα σ µ α α µ i σ µ α α θ α µ, θ α = 2iσ µ α α µf(x,θ,θ = 2σ µ α α P µf(x,θ,θ } f(x,θ,θ SUSY super space supaer field Super field θθ componetn field 12 F(x,θ,θ f(x+θφ(x+θχ(x+θθm(x+θθn(x+θσ µ θv µ (x+θθθλ(x+θθθψ(x+θθθθd(x super field susy component field susy δ ξ F(x,θ,θ (ξq+ξqf(x,θ,θ δ ξ f(x+θδ ξ φ(x+θδ ξ χ(x+θθδ ξ m(x+θθδ ξ n(x+θσ µ θδ ξ v µ (x+θθθδ ξ λ(x+θθθδ ξ ψ(x+θθθθδ ξ d(x super filed