はじめに 卒業研究のテーマとして土星のリングを取り上げてきた 土星はその美しいリングを持つ惑星として有名である 太陽系の惑星では土星以外にもリングを持つ惑星に木星 天王星 海王星が挙げられるが 土星の持つリングはこの 3 つの惑星とは比べ物にならないほど はっきりとしていて特徴的である そこで本論文

Similar documents
デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を

Microsoft PowerPoint - 科学ワインバー#2

Microsoft Word - jupiter

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

高軌道傾斜角を持つメインベルト 小惑星の可視光分光観測

FdText理科1年

ニュートン重力理論.pptx

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

スライド 1

大阪大学 大学院理学研究科博士前期課程 ( 宇宙地球科学専攻 第 2 次募集 ) 入学試験問題小論文 (2013 年 10 月 26 日 11 時 00 分 ~12 時 30 分 ) 次の [1] から [5] までの 5 問のうちから 2 問を選択して解答せよ 各問には別の解答 用紙を用い 解答用

DVIOUT-SS_Ma

Webデザイン論

sougou070507

えられる球体について考えよ 慣性モーメント C と体積 M が以下の式で与えられることを示せ (5.8) (5.81) 地球のマントルと核の密度の平均値を求めよ C= kg m 2, M= kg, a=6378km, rc=3486km 次に (5.82) で与えら

栗まんじゅう問題の考察 篠永康平 ドラえもんの有名な道具の一つに バイバイン というものがある これは液体状の薬品で 物体に 1 滴振り掛けると その物体の個数が 5 分ごとに 2 n 個に増殖する 食べ物の場合は 食べるなどして元の形が崩れると それ以上の増殖はない 5 分ごとに 2 倍に増えるの

ギリシャ文字の読み方を教えてください

大阪市立科学館研究報告 第21号 2011年 p.29-36

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

Microsoft Word - t30_西_修正__ doc

Microsoft PowerPoint - 1章 [互換モード]

ブラックホールを コンピュータ上で 創る 柴田大 ( 京都大学基礎物理学研究所 )

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

パソコンシミュレータの現状

_Livingston

Microsoft Word - 01.docx

Microsoft Word - 中村工大連携教材(最終 ).doc

宇宙機工学 演習問題

宇宙はなぜ暗いのか_0000.indd

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

スライド 1

コロイド化学と界面化学

物体の自由落下の跳ね返りの高さ 要約 物体の自由落下に対する物体の跳ね返りの高さを測定した 自由落下させる始点を高くするにつれ 跳ね返りの高さはただ単に始点の高さに比例するわけではなく 跳ね返る直前の速度に比例することがわかった

太陽系以外に惑星があることが初めて確認されたのは1995年のことでした

Microsoft Word - thesis.doc

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

week1_all

1

大宇宙

スライド 1

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

天文学会記者発表資料

Microsoft PowerPoint _量子力学短大.pptx

<4D F736F F D BE289CD8C6E93E082CC835F C982E682E98CB88CF582C982C282A282C42E646F63>

銀河風の定常解

H20マナビスト自主企画講座「市民のための科学せミナー」

人工衛2 はなぜ地上に落ちてこないの? が落ちてこないわけを 次のようにして説明しましょう 模造紙をつなぎ合わせて地球に見立てた大きな円を描き 子どもに質問しながらボールの軌跡を書き込んでいきます 模造紙には地面に見立てた直線も引いておきます ( 丸い地球の全てを見せない ) 模造紙は折っておきます

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

1: : Voyager 1 : Keck 1) : 2) 10 1( ) 15 1/3 50% 3) 1990 adaptive optics ( )

ハートレー近似(Hartree aproximation)

線積分.indd

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

Xamテスト作成用テンプレート

PowerPoint プレゼンテーション

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1

東邦大学理学部情報科学科 2014 年度 卒業研究論文 コラッツ予想の変形について 提出日 2015 年 1 月 30 日 ( 金 ) 指導教員白柳潔 提出者 山中陽子

Microsoft Word - Chap17

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

テンプレート

火星大気循環の解明 ~ ダストデビルの内部調査 ~ Team TOMATO CPS 探査ミッション立案スクール 2016/08/26

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい.

Microsoft Word - 9章3 v3.2.docx

領域シンポ発表

微分方程式による現象記述と解きかた

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

<4D F736F F D FCD B90DB93AE96402E646F63>

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc)

物理演習問題

構造力学Ⅰ第12回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

プランクの公式と量子化

Microsoft Word - プレス原稿_0528【最終版】

遊星人Vol14№2 Jun2005

Microsoft Word - 卒研 田端 大暉.docx

ポリトロープ、対流と輻射、時間尺度

破壊の予測

19年度一次基礎科目計算問題略解

ギリシャ文字の読み方を教えてください

概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難 ) 海中や

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

ÿþŸb8bn0irt

FdData理科3年

観測的宇宙論WS2013.pptx

太陽系外惑星の光と影

Microsoft PowerPoint - zairiki_3

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子

Microsoft PowerPoint - hiei_MasterThesis

自然地理学概説

Microsoft Word - 5章摂動法.doc

新たな宇宙基本計画における宇宙科学・宇宙探査の位置付け及び主な関連事業の概要

スライド 1

Microsoft PowerPoint - 夏の学校(CFD).pptx

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

測量士補 重要事項「標準偏差」

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Transcription:

卒業論文 土星リングの起源と間隙 天文学研究室 09S1-010 川島雅大 1

はじめに 卒業研究のテーマとして土星のリングを取り上げてきた 土星はその美しいリングを持つ惑星として有名である 太陽系の惑星では土星以外にもリングを持つ惑星に木星 天王星 海王星が挙げられるが 土星の持つリングはこの 3 つの惑星とは比べ物にならないほど はっきりとしていて特徴的である そこで本論文では 研究のメインテーマとしてこのリングが何でできているのか そしてどのようにできたのか考えてみたいと思う 次にリング中に存在する様々な間隙がどのように作られたのかをまとめてみる 1 章では簡単な土星についての紹介をしてみたいと思う 様々な物理量等をこの章で紹介する 2 章では土星のリングが何でできているのかを紹介し そしてその構成物質がどのような状態なのかをまとめてみる 3 章ではリングの起源として様々な説が挙げられているが 計算や推理等を通じてどの説が1 番起源の説明として相応しいのかを考察してみる 4 章ではリング中の間隙がどのように作られたのかを周りの衛星との関係等から導いていく そして最後に研究全体を通してのまとめを記述しておく 2

目次 1 章土星とは P4 1.1 どんな惑星か P4 1.2 土星の主な物理量 P5 2 章土星のリング P6 2.1 リングの概要 P6 2.2 リングの幅 軌道半径 粒子サイズ P7 3 章リングの起源 P8 3.1 様々な説 P8 3.2 潮汐力とは P8 3.3 潮汐力の式 P9 3.4 ロッシュ限界とは P11 3.5 ロッシュ限界の式 P11 3.6 ロッシュ限界の算出 P13 3.7 土星形成時の残りの物質からできた説 P14 3.8 E リングとエンケラドゥス衛星 P14 4 章リング中の間隙 P15 4.1 様々な間隙 P15 4.2 カッシーニの間隙 P16 4.3 間隙内の氷粒子と 3 つの衛星の公転周期 P17 まとめ P19 3

1 章土星とは 1.1 どんな惑星か 太陽からの距離が地球の 10 倍 直径も地球の 10 倍あり 太陽系では木星に次いで 2 番目に大きな惑星である 木星型惑星に属し 太陽に近いほうから 6 番目の惑星である 水素やヘリウムのガスを主成分としているガス惑星でもある NASA のカッシーニの赤外線画像 土星の内部構造は木星と似ていて 中心に岩石質の核があり その上に氷の層 そしてその上に液体金属水素とヘリウムの層といった形で階層ごとに異なる物質が存在している また内部はとても高温であり 核では 12000(K) に達し太陽から受けるエネルギーよりも多くのエネルギーを外に放出している 土星の内部構造 土星でも地球と同じく極でオーロラが発生する ハッブル宇宙望遠鏡による紫外線観測で観測された 赤外線オーロラは非常に微弱で画像としては捉えられていないのである 土星のオーロラは特に夜明け側で顕著である ハッブル望遠鏡により撮影 4

1.2 土星の主な物理量 太陽からの平均距離 平均公転半径 9.55491(AU) 1,426,725,400(km) 公転周期 29.46( 年 ) 赤道面での直径 120,536(km) 表面積 4.38 10 10 (km 2 ) 質量 5.69 10 26 (kg) 体積 827 兆 (km 3 ) 自転周期 ( 赤道面 ) 自転周期 ( 極 ) 10 時間 13 分 59 秒 10 時間 39 分 25 秒 平均密度 0.70(g/cm 3 ) ここで注目するべき点は 土星の平均密度である 水の密度は約 1(g/cm 3 ) なのであるが土星の平均密度はそれよりも低い 0.70(g/cm 3 ) なのである すべての惑星を収容できる巨大な水槽があるとして太陽系の惑星を全てその中に入れるとすると他の惑星は水の中に沈むのであるが 土星だけは水に浮くのである このことから水に浮かぶ惑星とも言われている 5

2 章土星のリング リングの構成粒子 ( イメージ図 ) 真横からみた土星 ( ハッブル望遠鏡により撮影 ) 2.1 リングの概要 土星の 1 番の特徴と言えるものは やはりリングである このリングは 99% が水の氷の粒子でできていて 残りはシリカや酸化鉄等である リング中の氷粒子は土星の衛星からの重力の影響を受け リングでは様々な現象が起きている また このリングは非常に薄く 土星を真横から見るとリングはないように見える 土星のリングは内側から順に D リング C リング B リング A リング F リング G リング E リングとなっていてアルファベット順ではない この中で A リング B リング C リングはメインリングと呼ばれている ちなみに地上から容易に観測できるのは A リングと B リングのみである これは A リングと B リングの氷粒子のサイズが他のリングと比べて大きいからである 6

2.2 リングの幅 軌道半径 粒子サイズ リング幅軌道半径粒子サイズ A リング 14580 (km) 122200~ 1(cm)~10(m) 程度 136780(km) B リング 25580(km) 92000~ 1(cm)~10(m) 程度 117580(km) C リング 17500(km) 74500~92000(km) 1(cm) 程度 D リング 7500(km) 67000~74500(km) ミクロンサイズ E リング 300000(km) 180000~ ミクロンサイズ 480000(km) F リング 30~500(km) 140220(km) μm~cm サイズ G リング 9000(km) 166000~ 175000(km) ミクロンサイズ シリーズ現代の天文学 9 太陽系と惑星より引用 このように各リングによって粒子サイズや 幅等は大きく異なっている 粒子 サイズが大きいところは明るく見え そうでないところは暗く見える 7

3 章リングの起源 3.1 様々な説 土星には特徴的なリングが存在するが このリングは果たしてどのようにして誕生したのかを考えてみる 土星を形成した物質の残りから形成されたという説や隕石が衛星に衝突してその衛星が砕けてできた説 そして 1 番注目されているのが 19 世紀にエドゥアール ロシュが提唱したもので 土星の周りを周っていた氷衛星の軌道がロシュ限界よりも近くなり 潮汐力によって粉々になったとするものである まず第一に この氷衛星が土星の潮汐力によって破壊された説を考えてみる 3.2 潮汐力とは 潮汐力とは天体に働く引力の差によって天体を引き延ばす力のことである 土星とその周りを周る衛星を考えると土星が衛星に及ぼす引力は衛生の表面と中心では大きさが違う この引力の差を潮汐力と言う よって衛星は形を歪めるようになり 引力に耐え切れなくなったときに破壊されてしまう 8

3.3 潮汐力の式 質量 M[kg] の天体 A が R[m] だけ離れた半径 r[m] の質量 m[kg] 天体 B に ど のような重力作用を及ぼすか考えてみる G を万有引力定数として天体 A が天体 B の表面に及ぼす引力を Fa とすると Fa=GMm/(R-r) 2 天体 B の中心に及ぼす引力を Fo とすると Fo=GMm/R 2 潮汐力の大きさは Fa-Fo なので GMm/(R-r) 2 -GMm/R 2 (1) となる 9

(1) 式を変形すると GMm{1/(R-r) 2-1/R 2 } ここで 1/(R-r) 2 =(R-r) -2 =[R{1-(r/R)}] -2 一般に x 1(x が非常に小さい 1 と比べて無視できる ) ときは 1+x n =1+nx(n はマイナスでも良い x 2 以上の項は無視する ) つまり (1-x) -2 =1+2x であるので よってよって {1-(r/R)}-2=1+2(r/R) (r R だから ) [R{1-(r/R)}] -2 =R -2 +2(r/R 3 ) 1/(R-r) 2-1/R 2 =2r/R 3 (-1/R 2 =R -2 ) なので潮汐力の式はとなる 2GMmr/R 3 10

3.4 ロッシュ限界とは ロッシュ限界とはフランスの天体力学者 エドゥアール ロッシュが 1848 年に理論的に打ち出したもので 主星に対して衛生や彗星が近づきすぎると 衛生や彗星は主星による潮汐力で引き伸ばされて その形を保てず崩壊する 主星に衛生や彗星が近づいて崩壊を始めるときの主星の中心と衛生や彗星の中心間の距離のことである つまり氷衛星がこのロッシュ限界内に入って 土星からの潮汐力に耐え切れなくなり 破壊されてリング状に散ったという考えがあるのである 3.5 ロッシュ限界の式 ロッシュ限界の式は主星からの潮汐力 = 衛星自身の重力で求めることができる 2GMmr 2 /R 3 =Gm 2 /r 2 2 (2) ここで G: 万有引力定数 M: 主星の質量 m: 衛星の質量 r 2 : 衛星の半径 R: 主星と衛星間の距離 である 主星の密度を ρ 1, 主星の半径を r 1, 衛星の密度を ρ 2 とすると となる M=4πr 1 3 ρ 1 (3) m=4πr 2 3 ρ 2 (4) 11

ここで (3),(4) 式を (2) 式に代入し計算すると R={2(ρ 1 /ρ 2 )} 1/3 r 1 (5) と算出できる (5) 式から先は厳密には計算できず エドゥアール ロッシュが近似的な式を導出した R 2.456(ρ 1 /ρ 2 ) 1/3 r 1 (6) これが導出された式であり ロッシュ限界を求めるための式である R: ロッシュ限界 ρ 1 : 主星 ( 土星 ) の密度 ρ 2 : 衛星の密度 r 1 : 主星 ( 土星 ) の半径 12

3.6 ロッシュ限界の算出 (6) 式に土星の密度 ρ 1 =0.70(g/cm 3 ) 氷の密度 ρ 2 =0.92(g/cm 3 ) 土星の半径 r 1 =6.03 10 4 (km) を代入して計算すると ロッシュ限界 : 約 1.4 10 5 (km) よってこの計算結果から氷衛星が土星の中心から約 1.4 10 5 (km) の位置で破壊されたことになる ゆえに土星の A リング付近で氷衛星が破壊され 氷粒子がリング状に飛び散ったと考えることができる 氷粒子のサイズが大きい A リング付近で氷衛星が砕け始め とてもサイズが小さい D リング付近で完全に砕けたと考えれば 土星のリングは氷衛星が潮汐力によって破壊されてできたという説は有力な考えなのではないだろうか ちなみに土星のリングを形成する氷粒子の総質量や氷の密度の関係から 潮汐力によって破壊された衛星は土星の衛星のミマスと同じくらいもしくはそれ以上の大きさと考えられている 仮に衛星ミマスが土星からの潮汐力によって破壊されたとしても ロッシュ限界の値はだいたい 1.4 10 5 (km) となる 衛星ミマス ( カッシーニにより撮影 ) 13

3.7 土星形成時の残りの物質からできた説 次に土星形成時の残りの物質からできた説について考えてみる 土星のリングの構成物質は氷を主成分とした微小天体で その存在範囲 ( リングの厚さ ) はわずか数百メートルしかない 先程も述べたとおり 非常に薄いのである 当然微小天体同士の衝突が起こり長年月 ( 数億年程度 ) の間には環は消えてしまうはずである したがって現在のリングは比較的新しい時代にできたものと考えることができる ゆえに 土星形成時の残りの物質からできたとは考えにくい 3.8 E リングとエンケラドゥス衛星 今までリング形成の 2 つの説について考えてきたが 1 番外側の E リングは他のリングと形成の理由が異なる 土星の周りにエンケラドゥスという氷の衛星が周っていて そのエンケラドゥスの南極の氷成火山が噴火し そこから噴き出る水蒸気と氷の結晶が E リング付近の軌道まで流れ込みリングが形成されているのである この氷成火山の噴火の理由として考えられるのは エンケラドゥスは強大な土星によって ゴムマリのように楕円に伸びるほど引っ張られる 伸びたり縮んだりすることで 内部の氷や岩石がこすれて熱が発生する よって水蒸気が噴出すると考えられている また 氷の結晶はこの水蒸気が氷結したものであると考えられている エンケラドゥス ( カッシーニが撮影 ) エンケラドゥスの水蒸気の噴出 (NASA より ) 14

4 章リング中の間隙 4.1 様々な間隙 土星のリングの中には 様々な間隙が存在している これらの間隙は リングの中やリングの外に存在している衛星からの重力の作用によって 形成されている例えば A リング中にキーラーの間隙という間隙が存在するのであるが 幅が約 42(km) の間隙である この間隙ができている理由は 2005 年 5 月 1 日に発見された小衛星ダフニスがその中を公転し 間隙内の物質を一掃しているためである またこの衛星により 間隙の端に波を生じている キーラーの間隙 ( カッシーニにより撮影 ) また同じく A リング中にはエンケの間隙という幅が約 325(km) の間隙が存在していて これもキーラーの間隙と同じように 内側を公転する小衛星パンの影響によって形成されている このようにリング中に小衛星が公転することによって氷粒子が一掃されて 形成されている間隙が存在しているのである エンケの間隙 ( カッシーニが撮影 ) 15

4.2 カッシーニの間隙 カッシーニの間隙とは A リングと B リングの間にある間隙のことで 1675 年にフランスの天文学者 ジョヴァンニ カッシーニによって発見されたことからこの名がつけられた 幅は約 2600(km) あり 高精度の望遠鏡であれば地上からでも観測することができる 間隙中にはごく少量ではあるがリングを構成する粒子が公転している このカッシーニの間隙が構成されている理由は キーラーの間隙やエンケの間隙が構成されているのとは異なる キーラーの間隙やエンケの間隙は間隙の中の小衛星が粒子を一掃していたのであるが カッシーニの間隙の場合は土星の外を公転する衛星の重力作用によって作られている 土星の衛星であるミマス エンケラドゥス そしてテティスが間隙の構成に関わっているのである この 3 つの衛星の軌道はカッシーニの間隙からずっと遠くにある しかし間隙中の粒子とミマス エンケラドゥス テティスはそれぞれ 2:1 3:1 4:1 の強い共鳴を起こし この間隙から粒子を吹き飛ばすのである 間隙中の粒子はブランコを押すたびに大きく揺れるように 3 つの衛星の共鳴によって外側の軌道に押し出されやがて 間隙となるの である カッシーニの間隙 ( 探査機カッシーニが撮影 ) 16

4.3 間隙内の氷粒子と 3 つの衛星の公転周期 ここで実際に間隙中の氷粒子 ミマス エンケラドゥス テティスの公転周期 を求めてみる GMm/r 2 =mv 2 /r (7) ここで左辺は土星からの万有引力で右辺は遠心力である G: 万有引力定数 M: 主星 ( 土星 ) の質量 m: 衛星 or 氷粒子の質量 r: 衛星 or 氷粒子から主星 ( 土星 ) までの平均距離 v: 衛星 or 氷粒子の速度 (7) 式から速度 v を求める そして T=2πr/v (8) から公転周期 T を算出する 17

ここで G=6.7 10-11 M=5.69 10 26 (kg) ミマスと土星との平均距離 =185500(km) エンケラドゥスと土星との平均距離 =238000(km) テティスと土星との平均距離 =294619(km) カッシーニの間隙内の氷粒子と土星との平均距離 =119890(km) として それぞれの数値を (7),(8) 式に代入して計算すると ミマス : v 1.4 10 4 (m/s) T 8.1 10 4 (s) エンケラドゥス :v 1.3 10 4 (m/s) T 1.2 10 5 (s) テティス :v 1.1 10 4 (m/s) T 1.6 10 5 (s) 間隙内の氷粒子 :v 1.8 10 4 (m/s) T 4.2 10 4 (s) と求めることができ 間隙中の粒子とミマス エンケラドゥス テティスはそ れぞれ 2:1 3:1 4:1 の共鳴を起こし それによってカッシーニの間隙が構 成されていることがわかる 18

まとめ 土星のリングは 板状のリングではなくたくさんの氷粒子等がリング状に集まってできているのである そして氷粒子のサイズはミクロンサイズのものから 10(m) くらいのものまで幅広く それぞれのリングによってサイズが異なる 地上から観測できるのは氷粒子のサイズが大きい A リング B リングのみである 土星のリングの起源は まだはっきりとはわからないが 氷衛星もくしは氷の彗星が土星に接近しすぎて潮汐力によって破壊され構成されたという説が有力であると考えられる 潮汐力やロッシュ限界の計算 破壊された衛星の大きさの予想 そして現在のリングの状態 ( リングの薄さ ) 等からこの説が 1 番有力と考えられる しかしこれは今現在考えられている説で 1 番有力なだけであり確実とは言えない 今後の土星探査機からの情報等で別の説また新たな説が有力視されるかもしれない ゆえに土星探査機の今後の情報からは目が離せないであろう 土星のリング中の様々な間隙は 小衛星が間隙中を公転することにより 中の氷粒子を一掃したり また土星の衛星からの共鳴によって氷粒子が外へと押し出されたりして構成されている 間隙から遠く離れた衛星からの共鳴によっても間隙は構成されるため 衛星からの重力作用はとても巨大な力であると考えられ リングの間隙等を研究するにあたって 重要ではずせない事柄であると考えられる 土星にはいまだに不明なことが多く 特にリングについて ( リング中で起こる様々な現象 ) 未解決なことがたくさん存在する 今後の土星探査機の活動等から こういった土星の不明な事柄が 1 つ 1 つ解明されることを期待し そして土星探査そのものに常に注目していきたいものである 19

参考文献 シリーズ現代の天文学 9 太陽系と惑星渡部潤一 井田茂 佐々木晶 [ 編 ] 日本評論社 太陽系探検ガイドエクストリームな 50 の場所デイヴィット ベイカー トッド ラトクリフ [ 著 ] 渡部潤一 [ 監訳 ] 後藤真理子 [ 訳 ] 朝倉書店 マーカス チャウンの太陽系図鑑マーカス チャウン [ 著 ] 糸川洋 [ 訳 ] オライリージャパン 参考ホームページ http://cedec.kumamoto-u.ac.jp/2002/article/mech/mech005/www/ic_monokuri/ sub1.htm http://www7a.biglobe.ne.jp/~falcons/rochelimit.html http://www.s-yamaga.jp/nanimono/taikitoumi/choseki.htm http://www.geocities.jp/planetnekonta2/hanasi/ring/ring.html 20