木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

Size: px
Start display at page:

Download "木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合"

Transcription

1 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を x = とする 尚, 単振動の x = の位置は単振動の振動中心である. 単振動中の質点に働く外力の和と単振動の運動方程式 単振動は次のように定義される 尚, ここでいう 質点に働く外力 とは, 質点に働く外力の和 のことである 質点に働く外力の大きさが ( 質点に働く力の ) つり合いの位置からの距離に比例し 且つその向きが常につり合いの位置のとき, 質点は一直線上を, つり合いの位置を中心に, 振動運動する このような質点の運動を単振動運動という 質点が一直線上を運動するならば, 外力の向きも同一直線上にある つり合いの位置に向かう力とは, 質点に働く外力のことである つり合いの位置に向かう力の大きさは, 質点からの距離に比例する ことから, 質点に働く外力を F, つり合いの位置からの変位を, 比例定数を ( > ) とすると, 質点に働く外力の大きさは, F = ( > ) と表せる よって, 数学的には, F = または F = - となる ところが, 質点に働く外力の向きは, 常につり合いの位置の向きだから, 質点がつり合いの位置から右向きに変位したときに質点が受ける外力は左向き, 左向きに変位したときに質点が受ける外力の向きは右向きとなる つまり, 質点の変位が正ならば質点が受ける外力の向きは負, 質点の変位が負ならば質点が受ける外力の向きは正となる よって, 物理的に正しいのは, F - = ( > ) である ゆえに, 質点の質量を, 単振動の加速度を a とすると, その質点の単振動の運動方程式は, a = - と表される

2 まとめ 質量 の質点に働く外力のつり合いの位置からの変位を とおいたとき, 質点の運動方程式が a = - と表されるなら, 質点の運動は, つり合いの位置 ( = ) を振動中心とする単振動運動である 3. 単振動の運動方程式と単振動の式 単振動の式 ( 物理小ネタ 等速円運動の式から単振動の式へ を参照してください ) 初期位相 a ( 時刻 = 質点の振動中心からの変位 は, ( w + a ) = Asin t と表せる これより, 質点の速度 v は, v = = Aw cos + ( wt a ) 質点の加速度 a は, dv a = = -Aw sin = -w Asin t における角度 ), 振幅 A, 角速度 ( 角振動数 )w ( ) ( wt + a ) ( wt + a ) よって,より, a = -w 単振動の式と単振動の運動方程式との融合 一方, 単振動の運動方程式 a = - より, a = - 3,3 より, w = w = wt = p より, > とすると, p T = = p w

3 まとめ 初期位相 a, 振幅 A, 角速度 ( 角振動数 )w ( > ) とすると, 質点の振動中心からの変位, 質点の速度 v, 質点の加速度 a は, それぞれ, = Asin ( w t + a ), v = Aw cos ( wt + a ), a = -Aw sin( wt + a ) = -w また, このときの質量 の質点の運動方程式を a = - とすると, p w =, T = = p w 補足 : 単振動の変位 の表し方 d 単振動の運動方程式 a = - と a = より, d 単振動の微分方程式 = - ここで, 単振動の振幅を A, 角振動数をw ( > ) とし, = Asin wt とおくと, d = -Aw sin wt = -w,より, w = のとき, の解は = Asin wt となる よって, 単振動の運動方程式 a = - において, 変位 は, = Asin wt = A coswt とおくと, d = -Aw coswt = -w 3,3より, w = のとき, の解は, = A cos wt となる æ ö w = の形で表すことができる è ø よって, 単振動の運動方程式 a = - において, 変位 は, = A cos wt = Asin wt + A cos wt とおくと, d æ ö w = の形で表すことができる è ø = -Aw sin wt - Aw coswt = -w 4 3

4 ,4より, w = のとき, の解は = Asin wt + A cos wt となる よって, 単振動の運動方程式 a = -x において, 変位 は, = Asin wt + A cos wt など, 変位 の表し方はいろいろある æ ö w = の形で表すことができる è ø æ ö = Asin wt d w = などを, 微分方程式 = - の特殊解とよぶ è ø 別解 : 数学 Ⅲ の積分の練習問題のつもりで理解してください d æ ö è ø dv = dv = dv = = dv = v dv より, = d d より, = d d = - の両辺に をかけると, = - d d \ d = æ ö è ø æ ö è ø d æ è = - = - ö ø, これを t について不定積分すると, æ ö è ø = - \ = ± c + c - ( c は積分定数 ) ± いずれも同じ結果になるので, c - c = = より, = d æ è = c - で進めると, = より, c - \ ò = ò c - c ö ø 4

5 ここで, 左辺の不定積分について, c = sinq とおくと, \ = ò c - c = q c c c = cosqdq \ = cosqdq cosq ò c - sin よって, q = t + c ( c は積分定数 ) æ ö \q = t + c 3 c 3 = c è ø æ \ sinq = sin t + c 3 è ö ø sin q = とおいたから, c c æ \ = sin t + c 3 è ö ø c c ここで, A =, w = とおくと, d 単振動の微分方程式 = - の解は, ( t ) = Asin w + c あるいは, dq q æ = sin t + c 3 è Asin( wt + c ) = ( Acos c ) sin wt + ( Asin c ) coswt = a sin wt + b coswt ( a = Acos c, b = A c ) = より, と表せる sin ö ø 5

6 4. 単振り子の運動方程式と単振動の式 まずは, 用語の定義から 単振り子 軽い糸の上端を固定して下端におもりをつるし, これを鉛直面内で振動させるもの 振り子 定点のまわりに振動する物体 では, 本題 質量 の振り子に働く外力のつり合いの位置を原点 O とし, 振り子の軌道 ( 円弧 ) の反時計まわりの向きを 軸とする また, 振り子の振幅の大きさを q とし, q は十分小さいものとする ( ) ただし, 図は, 見やすくするためq をわざと大きくとった q» - g sinq - q q 張力 T - q O q q q g 6

7 振り子の運動方程式 振り子は軌道 ( 円弧 ) の接線方向の外力を受けて単振動をする 糸の張力 T の円弧の接線方向の分力は だから, 張力 T は振り子の運動方程式に含まれない よって, 振り子の単振動運動の原動力となる外力は, 重力の円弧の接線成分 -g sinq である よって, 振り子の単振動の運動方程式は, a = -g sinq ここで, q < q» だから, sinq = q としてよい よって, a = -gq 4 また, 振り子の変位 = q 5 4,5より, a = -g 6 \ a = - g g は定数だから, 運動方程式 6は単振動を表している 単振動の式 振り子の振幅の大きさは q ( w a ) = q sin t + 振り子の速度 v = = q w cos( wt + a ) であり, 初期位相をa, 角振動数をw ( ) dv = sin w 7 振り子の加速度 a = -q w ( wt + a ) = - 単振動の式と単振動の運動方程式との融合 g 6より, a = - これと7より, > とすると, - w = - g \w = g p \ T = = p w g 補足 以上より, 単振り子は振幅 q, 周期 T = p の単振動運動を行う g g 6について, 単振動の運動方程式の一般形 a = - より, = これを公式 T = p に代入すると, T = p が得られる g 7

8 5. 単振動の位置エネルギーと力学的エネルギー保存則 A. 保存力のみによる単振動の力学的エネルギー 質点に働く外力が保存力のみの単振動運動の場合, ( 物理小ネタ 保存力 を参照してください ) 質点に働く保存力のつり合い位置 ( 保存力の和が となる位置 ) を基準 (= ) とし, 質点の運動方向に適当な軸をとる このときの質点の変位 ( 位置 ) を とし, において質点に働く保存力を F とすると, F = - が成り立つ A-. 単振動の位置エネルギー 保存力とつり合う外力がする仕事は位置エネルギーに変化する つり合いの位置からの変位を, 変位した質点に働く保存力を F とすると, F = - だから, それとつり合う外力を とすると, = である よって, 質点をつり合いの位置から 変位させるとき, 外力がする仕事 W = であり, このとき単振動の位置エネルギーは 変化する これと, つり合いの位置, すなわち = における単振動の位置エネルギー = より, つり合いの位置から 変位した位置の単振動の位置エネルギーは である A-. 単振動の力学的エネルギー保存則 保存力の位置エネルギー変化は, はじめの位置とおわりの位置だけで決まるから, つり合いの位置の保存力の位置エネルギーを とすると, 位置 において, 保存力の位置エネルギー = 単振動の位置エネルギー = となる また, 非保存力が働かない場合, 力学的エネルギー保存則が成り立つ よって, 補足 + v = 一定 が成り立つ 質点に複数の保存力が作用している運動で, その運動が単振動運動であれば, 力学的エネルギー保存の法則を 位置エネルギーの総和 + 運動エネルギー = 一定 の式を使うより, つり合いの位置を基準にした力学的エネルギー保存の法則 + v = 一定 の式を使う方が楽なのは明らかである 8

9 B. 一定の非保存力がはたらく場合の単振動の力学的エネルギー保存 B-. たとえ非保存力が働いていても, そのベクトル ( 大きさと向き ) が一定であれば, 単振動運動は続く 単振動運動の原動力は, 質点に働く保存力のつり合いの位置からの変位を x としたとき, 質点に働く保存力の和が F = -x と表せる力 ( つり合いの位置に戻ろうとする復元力 ) であった 保存力の和 F も保存力だから, これを単振動運動の保存力と呼ぶことにする 質量 の質点が単振動運動の保存力 F = -x をうけて, 運動方程式 a = -x の単振動運動をしているとする ここに, 質点の単振動の向きに大きさと向きが一定の非保存力 を働かせると, æ ö 質点が受ける外力の和 F = F + = -x + = - x - となる è ø ここで, = x - とおけば, 質点の運動方程式 a = - が得られる これは, = を振動中心とする質量 の質点の単振動の運動方程式である よって, 保存力を受けて単振動運動をしている質点に大きさと向きが一定の非保存力が働いても, 振動中心が x = から x = æ ö x - = に移動し, è ø また, 振動中心の移動により振幅の大きさも変わるが, 質点の単振動運動そのものは継続する これは, 非保存力が働いても単振動運動が成り立つ場合があることを示しており, このような非保存力の代表例に, 動摩擦力がある 9

10 非保存力が動摩擦力のとき ( 向きが周期的に変化する非保存力のとき ) の単振動運動 ばね定数 のばねにつながれた質量 の物体が, 動摩擦力 を受けながら単振動運動する場合を考えてみよう 尚, ばねの自然長の位置を x = とする. 振動中心は つある 振動中心を x とすると, x - より, 物体の運動の向きが負のとき = 動摩擦力 > より, 振動中心 x = 物体の運動の向きが正のとき > 動摩擦力 < より, 振動中心 x = < x = T また, 単振動の周期 T = p より, 振動中心が入れ替わる周期 = = p x x x x x x

11 . 振動中心が入れ替わるたびに振幅が小さくなっていき, 物体はやがて静止する x ax > x ( xax - > 最大摩擦力の大きさ ) まで物体を移動させてから放すと, 物体は負の向きに運動するから, x = x よって, 振幅 A = xax - x 8 また, 単振動の周期を T とすると, 物体を放してから T 後 物体は x x - ( xax - x ) = x - xax を振動中心とする単振動運動をする = まで移動し静止する このとき, x xax < - x - ( { x - x } - > 最大摩擦力の大きさ ) であれば, 次に物体の運動は, x = - x を振動中心とする単振動運動に変わる このとき, ( x ) 振幅 A - = - x - xax = xax - 3 x 9 8,9より, A - A = x T こうして, ごとに振幅が x ずつ小さくなっていく すなわち振動が減衰していく やがて, 振幅が最大となる位置で質点が静止したとき, æ ö F = - xn - < 最大摩擦力 g となり, 物体の単振動運動が終了する è ø 例 物体を下図 xax で放すと, x = -4 x + xax で物体は静止する ( 4 x + x ) < kx k = - ax 動摩擦力 の大きさは最大摩擦力 g より小さいから, 物体は x -4 x + x で完全に静止する = ax x - x ax A - x x A x ax x A A - 4 x + x ax

12 B-. 非保存力が働いていても, そのベクトル ( 大きさと向き ) が一定であれば, 単振動運動の力学的エネルギー ( 振動中心を位置エネルギーの基準位置にした力学的 エネルギー ) は保存される 物体が単振動の保存力 F = -x ( x は物体に働く保存力のつり合いの位置からの変位 ) に加え, 向きと大きさが一定の非保存力 をも受けて単振動運動をしている場合でも その力学的エネルギーが保存されることを定量的に確かめてみよう 確認 物体の位置が同一直線上を x から x へ変化したときを考える 力学的エネルギーと非保存力による仕事の関係 位置 x の力学的エネルギー + 非保存力 の仕事 = 位置 x の力学的エネルギー 位置 x, x の運動エネルギーを, それぞれ 位置 x, x の保存力の位置エネルギーは, それぞれ 以上より, x + v + + ( x - x ) = x v v, v とする æ ö ここで, この単振動の運動方程式 a = - x - = - より, è ø = x -, = x - とおくと, x = +, x, x である x = + だから, æ ö ìæ ö æ öü æ ö + + v + í ý = + + è ø îè ø è øþ è ø v + - = v = + よって, + v = 一定 v 同様に, 物体の逆方向の移動についても, = 一定 これは, 非保存力が働いていても, そのベクトルが一定であれば, 単振動運動の力学的エネルギー ( 振動中心を位置エネルギーの基準位置にした力学的 エネルギー保存の法則 ) は保存されることを示している が成り立つことを示している + v v v

13 x + v x x x 仕事 ( x - x ) x + v x x x 具体的に解説すると, v P kx x 動摩擦力 ' g v 自然長の位置 P kx x 平衡点 ( つり合いの位置 ) 3

14 図で, x, x をばねの自然長からの伸びとし, x はとくに動摩擦力とばねの復元力 kx の平衡点 ( つり合いの位置 ) とする また, 動摩擦係数を ', 物体 P の質量を とする すると, 平衡点における加速度は だから, - = ' g kx より ' g = kx 物体 P が位置 x から位置 x に位置に変位するときに動摩擦力がする仕事は ( x x ) - ' g - 物体 P の位置 x, 位置 x における力学的エネルギーはそれぞれ, v + kx, v + kx だから, よって, 力学的エネルギーと動摩擦力がする仕事の関係式は, v + kx - ' g + これと ' g = kx より, ( x - x ) = v kx v + kx - kx + ( x - x ) = v kx \ v + kx - kx x + kx = v + ここで, x を位置エネルギーの基準位置にとると, つまり, x の位置エネルギーを とすると, æ ö æ ö v + kx - kx x + kx - kx = v + kx - è ø è ø \ v + kx - kx x + kx = よって, v + k = これより, ( x - x ) v v 位置エネルギーの基準位置をつり合いの位置 ( あるいは運動の平衡点 ) にとれば, 一定の非保存力が働いていても力学的エネルギーが保存される kx kx 4

15 まとめ æ 物体の運動方程式が a = - x - è ö で表される場合 ø が保存力であろうとなかろうと一定の値でありさえすれば, その物体の運動は単振動運動であり, = x - とおけば, 力学的エネルギー保存則 : が成り立つ + v = 一定 尚, はつり合いの位置 ( あるいは運動の平衡点 ) からの変位を表す 5

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 自由振動と強制振動 -1/6 テーマ H3: 自由振動と強制振動 振動の形態には, 自由振動と強制振動の 種類があります. 一般に, 外力が作用しなくても固有振動数で振動を継続する場合は自由振動であり, 外力が作用することによって強制的に振動が引き起こされる場合は強制振動になります. 摩擦抵抗の有無によって減衰系と非減衰系に区分されるため, 振動の分類は次のようになる.

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

物理学 (2) 担当 : 白井 英俊

物理学 (2) 担当 : 白井 英俊 物理学 (2) 担当 : 白井 英俊 Email: sirai@sist.chukyo-u.ac.jp 2 章力のつり合い 力学とは 力と運動の関係を調べる学問 そのための基礎として 静止している物体 = 物体に働く力がつりあって平衡状態にある について 力の働きを調べる 2.1 力とは きちんとした定義が与えられ 特定の意味を持つ用語のこと 物理学に限らず いろいろな学問において 力 のように普通の言葉が専門用語として用いられることが多いので注意しよう

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

<48616E616B6F31352D8CF68EAE8F5797CD8A772E6A6864>

<48616E616B6F31352D8CF68EAE8F5797CD8A772E6A6864> ================================================= E-il yo@y.eil.ne.jp ホームページ p://www.ne.jp/si/nko/pysics/ ================================================= 公式集力学.jd < > 物体の運動 2 2 2 b y 2 (2) 2 = +b 0k/

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

木村の理論化学小ネタ 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお

木村の理論化学小ネタ   緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 共役酸と共役塩基 弱酸 HA の水溶液中での電離平衡と共役酸 共役塩基 弱酸 HA の電離平衡 HA + H 3 A にお 緩衝液 緩衝液とは, 酸や塩基を加えても,pH が変化しにくい性質をもつ溶液のことである A. 酸と塩基 弱酸 HA の水溶液中での電離平衡と酸 塩基 弱酸 HA の電離平衡 HA H 3 A において, O H O ( HA H A ) HA H O H 3O A の反応に注目すれば, HA が放出した H を H O が受け取るから,HA は酸,H O は塩基である HA H O H 3O A

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

はじめに 本チャレンジ ガイドは, 物理チャレンジに挑戦しようと考えているチャレンジャーに, どのように物理を学習したらよいか, その指針を示すテキストとして, 作成されました 内容は, 高校物理を基本としますが, 学習指導要領にはとらわれず, ある程度の微分積分 ( 高校数学で習う程度 ) を使用

はじめに 本チャレンジ ガイドは, 物理チャレンジに挑戦しようと考えているチャレンジャーに, どのように物理を学習したらよいか, その指針を示すテキストとして, 作成されました 内容は, 高校物理を基本としますが, 学習指導要領にはとらわれず, ある程度の微分積分 ( 高校数学で習う程度 ) を使用 チャレンジ ガイド 力学 電磁気 特定非営利活動法人物理オリンピック日本委員会 はじめに 本チャレンジ ガイドは, 物理チャレンジに挑戦しようと考えているチャレンジャーに, どのように物理を学習したらよいか, その指針を示すテキストとして, 作成されました 内容は, 高校物理を基本としますが, 学習指導要領にはとらわれず, ある程度の微分積分 ( 高校数学で習う程度 ) を使用し, 物理として重要で興味深い事柄などを含めました

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

センター試験対策[物理I]

センター試験対策[物理I] Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

Microsoft Word - 付録A,Bとその図

Microsoft Word - 付録A,Bとその図 付録 A 1 自由度系 ( 自由振動 ) の解法 はじめに振動現象を解明するのに基本となる 1 自由度不減衰系 ( 自由振動 ) の運動方程式の作成方法とその微分 ( あるいは偏微分 ) 方程式の解法を説明する. 1 自由度系モデルには, 単振動のばね 質量モデルと数学振子を用いる. A.1 運動方程式 ( 微分方程式 ) を立てる A.1.1 ばね 質量の場合 ( 1) 単振動の運動から運動方程式を求める

More information

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 剛体の重心と自由運動 -1/8 テーマ 07: 剛体の重心と自由運動 一般的に剛体が自由に運動できる状態 ( 非拘束の状態 ) で運動するとき, 剛体は回転運動を伴った運動をします. たとえば, 棒の端を持って空中に放り投げると, 棒はくるくる回転しながら上昇してやがて地面に落ちてきます. 剛体が拘束されない状態で運動する様子を考察してみましょう.

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が 05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

物理学 (4) 担当 : 白井 英俊

物理学 (4) 担当 : 白井 英俊 物理学 (4) 担当 : 白井 英俊 Email: sirai@sist.chukyo-u.ac.jp 4 章力のモーメントとモーメントのつり合い 物体に力を加えた時 作用点の位置によるが 並進運動 --- 物体全体としての移動回転運動 --- 物体自体の回転をおこす回転運動をおこす能力のことを力のモーメントという 4 章では力のモーメントについて学ぶ 4.1 力のモーメント 剛体 (rigid body):

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

Microsoft Word - 付録D_ doc

Microsoft Word - 付録D_ doc 以下 変数の上のドットは時間に関する微分を表わしている (e. =, = ) 付録 D 安定性と振動 D-) バネの運動方程式とのアナロジー図 - のように 質量 m の物体が バネ定数 k のバネ および粘性摩擦係数 を持つダッシュポットで支えられている系を考える ただし ダッシュポットは物体の速度 に比例して という抵抗力 ( 摩擦力 ) を生じる k m ( ) いま 物体へ外力 F( ) が作用するとき

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ 流体地球科学第 6 回 外から中心に投げたボールは? 回転盤の外から見た図 ( ) 期待される位置, ( ) 実際の位置 間違った図 1 間違った図 2 正しい図 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/ujio/215chiba/ ujio@aori.u-tokyo.ac.jp 215/11/2 最終更新日 215/11/24 ボールは左

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

2017年度 長崎大・医系数学

2017年度 長崎大・医系数学 07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

07 年度センター試験物理 問 5 ウ 気温が低くなるほど音速は遅くなるので, 上空より地表のほうが音速は遅い エ 地表から斜め上方に出た音波は, 屈折の法則より音速が大きいと屈折角も大きくなるの で, 大きく地表に向かって曲がっていく したがって, 遠くの地表面上に届きやすくなる ( 答 ) 5

07 年度センター試験物理 問 5 ウ 気温が低くなるほど音速は遅くなるので, 上空より地表のほうが音速は遅い エ 地表から斜め上方に出た音波は, 屈折の法則より音速が大きいと屈折角も大きくなるの で, 大きく地表に向かって曲がっていく したがって, 遠くの地表面上に届きやすくなる ( 答 ) 5 07 年度大学入試センター試験解説 物理 第 問小問集合問 右向きを正として小球 B の衝突後の速度を v [m/s] とすると, 衝突前後での小球 A,B の運動量保存則より, 4.0 [kg].0 [m/s] +.0 [kg] (-.0 [m/s]) 4.0 [kg].0 [m/s] +.0 [kg] v [m/s] ゆえに, v.0 [m/s] ( 答 ) 問 端 A のまわりでの棒 AB における力のモーメントのつりあいより,

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ 7 大気の力学 () 7. コリオリ力 水平面内に気圧の差があると風が吹く原因となる 気圧の差によって空気塊 高にはたらく力を気圧傾度力 (pessue gaient foce) という 気圧傾度力は等 圧線と直角に 高圧側から低圧側に向かってはたらく しかし 天気図で見ら れる風向と 等圧線とのなす角は直角ではないことが多い これは 地球の自 高転の影響によって 地球上を運動する空気塊にコリオリ力

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて,

Review Test 1 センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, Review Test センター試験対策 物理 I [ 力学編 ] 単元別総復習 6 回分 このテストは 大学入試攻略の部屋で配布されている Excel でセンター対 策 [ 物理 ] with CAT on Excel の印刷版です 同じ問題が Excel の画面上で簡単に解くことができて, しかもその場で採点 ができる CAT システム をなるべくご利用いただきたいのですが, それがで きない受験生の皆さんのために,

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

3回

3回 30 第 3 章ベクトルの微分法 キーワードベクトル ベクトルの演算 ゼロベクトル マイナスのベクトル ベクトルの定数倍 定数ベクトル 関数ベクトル ベクトルの成分表示 ベクトルの微分法 速度ベクトル 加速度ベクトル 極率 極率半径 ベクトルのスカラー積 ベクトル積 3.1 ベクトルの演算 1kgの質量や m 3 の体積などのように量で与えるものをスカラーと呼ぶ これに対し 北東の風 風速 m/sのように方向と大きさで与えるものをベクトルと呼ぶ

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

スライド 1

スライド 1 Q&A Q: 空気より重いガスなら声は低くなるのですか A: はい そのとおりです ( 動画参照 ) この動画で使われている気体は六フッ化硫黄 (SF 6 ) 分子量は 146 で窒素分子 28 の約 5 倍 無色 無臭 無毒の気体です Q: 貝を耳にあてると海の音が聞こえてくるというのはうそだったのだと知って悲しくなりました A: うそというわけではないと思いますが 気柱を耳にあてたときに聞こえるゴーっという音と同種のものだと思います

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

<4D F736F F D20959F93878DC48F4390B E F6E82CC895E93AE95FB92F68EAE82C68AB590AB97CD2E646F63>

<4D F736F F D20959F93878DC48F4390B E F6E82CC895E93AE95FB92F68EAE82C68AB590AB97CD2E646F63> ニュートンの運動方程式と慣性力 金沢工業大学基礎教育部 福島國雄 ねらい 力学の問題を解く場合には必ず物体に作用しているすべての力とその性質を知る必要がある. たとえば, 太陽の周りを公転している地球の運動を調べるには, 地球に作用している力を知る必要がある. その力は,( 太陽以外の天体の影響を無視し, 太陽に固定された座標系を慣性系と見なして ) 慣性系からみれば太陽が地球に及ぼす万有引力のみである.

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

最速降下問題

最速降下問題 最速降下問題 西山豊 533-8533 大阪市東淀川区大隅 --8 大阪経済大学経営情報学部 Tel: 06-638-43 E-Mail: nishiyama@osaka-ue.ac.jp. どの経路が速く到達するか図 のように傾斜面がある. 玉がAからBまで転がるとき最短時間であるのはどの曲線であろうか. 今仮に経路を直線, 次関数, サイクロイドとしよう. AとBを結ぶ最短経路は直線であるので直線がもっとも速く到達するかと思えるが意外と遅い.

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

単元への意識 運動やエネルギーの学習が好きですか とてもそうである :2 人そうである :3 人あまりそうではない :6 人そうではない :0 人 運動やエネルギーの実験が好きですか とてもそうである :1 人そうである :8 人あまりそうではない :1 人そうではない :0 人 運動やエネルギーの

単元への意識 運動やエネルギーの学習が好きですか とてもそうである :2 人そうである :3 人あまりそうではない :6 人そうではない :0 人 運動やエネルギーの実験が好きですか とてもそうである :1 人そうである :8 人あまりそうではない :1 人そうではない :0 人 運動やエネルギーの 高等学校第 2 学年理科 ( 物理基礎 ) 学習指導案期日平成 25 年 9 月 24 日 ( 金 ) 第 5 校時 1 単元名第 1 編運動とエネルギー第 2 章運動の法則 ( 数研出版株式会社 ) 場所熊本県立熊本西高等学校物理教室指導者教諭濱田崇裕 2 単元について (1) 単元観本単元では 中学校までに学習した力の作用と物体の運動との関係について 数量関係を見いだし数式として表現できることを学ぶ

More information

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越 7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越している そこで 回転成分に着目して大気の運動を論じる 7.1 渦度 大気の回転成分を定量化する方法を考えてみる

More information

[ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2)

[ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2) [ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2) 運動が発生する (3) 復元力があると 振動状態になる 自由度 (degree of freedom)

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

2017年度 金沢大・理系数学

2017年度 金沢大・理系数学 07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

ポンスレの定理

ポンスレの定理 ポンスレの定理. qution Section 定理 有本彰雄 東京都市大学 平成 年 月 4 日 定義. n 角形 P とは 平面上にあるn 個の点の順序列 ( p, p,, pn - ) のことである 各 pk は P の頂点と呼ばれる 記号法を簡単にするため便宜的に p n とする また 線分 p i i pp, i,,,, n - を P の辺と呼ぶ 定義. すべての頂点 p k が曲線 C

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information