x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

Similar documents
K E N Z OU


( ) ( )


KENZOU

II 1 II 2012 II Gauss-Bonnet II

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II 2 II

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

notekiso1_09.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

meiji_resume_1.PDF

Gmech08.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2011de.dvi

曲面のパラメタ表示と接線ベクトル

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Gmech08.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC


Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

i

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Part () () Γ Part ,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ii

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

all.dvi


v er.1/ c /(21)

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

7-12.dvi

08-Note2-web

Fubini

DVIOUT

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

gr09.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

all.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

dynamics-solution2.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

重力方向に基づくコントローラの向き決定方法

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

構造と連続体の力学基礎

untitled

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Microsoft Word - 11問題表紙(選択).docx

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

pdf

untitled

Gmech08.dvi


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

TOP URL 1

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

III Kepler ( )

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

I ( ) 2019

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

応力とひずみ.ppt

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Transcription:

12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13)

4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 1 v 2 v 1 v 2 v 1 v 2 = v 1 v 2 cos θ = 1 2 + b 1 b 2 + c 1 c 2, i j k v 1 v 2 = 1 b 1 c 1 = (b 1 c 2 c 1 b 2, c 1 2 1 c 2, 1 b 2 b 1 2 ) 2 b 2 c 2 θ v 1 v 2 0 θ π v 1 v 2 v 1, v 2 0 = (0, 0, 0) v 1, v 2 v 1 v 2 v 1, v 2 v 1 v 2 sin θ v 1, v 2, v 1 v 2 v i = ( i, b i, c i ) i = 1, 2, 3 [v 1 v 2 v 3 ] v 1 v 3 1 b 1 c 1 [v 1 v 2 v 3 ] = v 1 (v 2 v 3 ) = 2 b 2 c 2 3 b 3 c 3 v 1 (v 2 v 3 ) v 1 (v 2 v 3 ) = (v 1 v 3 ) v 2 (v 1 v 2 ) v 3 c 2011 2/(13)

4--2 2009 9 nbl, = (,, ) f (x,, z) v(x,, z) = (u(x,, z), v(x,, z), w(x,, z)) f, grd f v, div v ( f, f, f ) + + w v, rot v ( w, w, ) 2 f, ( f ), f 2 f + 2 f 2 + 2 f 2 2 (x,, z) n = (n x, n, n z ) f (x,, z) f n f = n x + n f + n f z v(x,, z) (x,, z) v v(x,, z) v (x,, z) 1 2 v f (x,, z) k k 2 f (x,, z) ( f g) = ( f ) g + ( g) f, ( f A) = ( f ) A + f ( A), ( f A) = ( f ) A + f ( A), (A B) = (B ) A + (A ) B + A ( B) + B ( A), (A B) = B ( A) A ( B), (A B) = (B ) A (A ) B + A ( B) B ( A), ( f ) = 0, ( A) = 0, ( A) = ( A) 2 A c 2011 3/(13)

4--3 2009 9 e r, e θ (r, θ) x = r cos θ, = r sin θ f = f r e r + 1 f r θ e θ, 2 f = 1 ( f ) 1 2 f r + r r r r 2 θ, 2 A = R e r + Θ e θ A = 1 (rr) + 1 Θ r r r θ (r, θ, ϕ) x = r sin θ cos ϕ, = r sin θ sin ϕ, z = r cos θ f = f r e r + 1 f r θ e 1 f θ + r sin θ ϕ e ϕ, 2 f = 1 ( r 2 f ) 1 ( f ) 1 2 f + sin θ + r 2 r r r 2 sin θ θ θ r 2 sin 2 θ ϕ, 2 A = R e r + Θ e θ + Φ e ϕ A = 1 (r 2 R) 1 (Θ sin θ) 1 Φ + + r 2 r r sin θ θ r sin θ ϕ, 1 ( (Φ sin θ) A = Θ ) er + 1 ( 1 R r sin θ θ ϕ r sin θ ϕ (rφ) ) eθ + 1 ( (rθ) R ) eϕ r r r θ (r, θ, z) x = r cos θ, = r sin θ, z = z f = f r e r + 1 f r θ e θ + f e z, 2 f = 1 ( f ) 1 2 f r + r r r r 2 θ + 2 f 2, 2 A = R e r + Θ e θ + Z e z A = 1 (rr) + 1 Θ r r r θ + Z, A = ( 1 Z r θ Θ ) er + ( R Z ) eθ + 1 ( (rθ) R ) ez r r r θ θ r e θ e e r r z eϕ r θ x x ϕ e θ x z r θ e z eθ e r c 2011 4/(13)

4--4 2009 9 t r(t) = (x(t), (t), z(t)) r() r(t) s(t) s(t) = t t r (τ) dτ = x (τ) 2 + (τ) 2 + z (τ) 2 dτ s s r(s) = (x(s), (s), z(s)) s t(s) = r (s) = (x (s), (s), z (s)) n(s), b(s) t (s) = κ(s)n(s), b(s) = t(s) n(s) κ(s) t (s) n, b t, n, b τ(s) t (s) = κ(s)n(s), n (s) = κ(s)t(s) + τ(s)b(s), b (s) = τ(s)b(s) c 2011 5/(13)

4--5 2009 9 u, v r(u, v) = (x(u, v), (u, v), z(u, v)) dr = r r du + dv E = r 2 = ( ) 2 ( ) 2 ( ) 2, r + + F = r = + +, G = r 2 = ( ) 2 ( ) 2 ( ) 2 + + dr dr = E(du) 2 + 2Fdudv + G(dv) 2 n n = r r / r r L = 2 r 2 n, M = 2 r n, N = 2 r 2 n dr dn = L(du) 2 + 2Mdudv + N(dv) 2 L, M, N L = N = 1 EG F 2 1 EG F 2 2 x 2 2 x 2 2 2 2 2 2 z 2 2 z 2, M = 1 EG F 2 2 x P P P κ 1, κ 2 H = 1 2 (κ 1 + κ 2 ) K = κ 1 κ 2 H = 1 2 EN 2FM + GL LN M2, K = EG F 2 EG F 2 2 2 z, c 2011 6/(13)

4--6 2009 9 1 n k r 0 r k = (x k, k, z k ) f (r) k f k r n 1 k rk+1 f k (x k+1 x k ) f k k=0 f x f dx, z r n n 1 f k r k+1 r k f k=0 f ds t r(t) ( t b) t b b f dx = f (r(t))x (t)dt, f ds = f (r(t)) r (t) dt A(r) = (P(r), Q(r), R(r)) k A k n 1 A k (r k+1 r k ) A dr k=0 t(r) r b A dr = Pdx + Qd + Rdz = A tds = A(r(t)) r (t)dt 2 n k k f (r) k f k n f k k f d f (r) k=1 u, v r(u, v) u b, c v d d b f d = f (r(u, v)) r c r dudv c 2011 7/(13)

r n(r) A(r) A nd A d A nd = A d = d b c A(r(u, v)) ( r r ) dudv r n r 3 n k k ϕ(r) ϕ k n ϕ k k ϕd k=1 u, v, w u b, c v d, e w f r(u, v, w) = (x(u, v, w), (u, v, w), z(u, v, w)) f ϕd = e d b c ϕ(r(u, v, w)) J(u, v, w) du dv dw J (x,, z) J(u, v, w) = (u, v, w) = w w w c 2011 8/(13)

4--7 2009 9 1 x P(x, ), Q(x, ) ( Q P ) dxd = Pdx + Qd x 2 xz A(x,, z) = z n (P(x,, z), Q(x,, z), R(x,, z)) A d = A nd n x ( P + Q + R ) dxddz = Pddz + Qdzdx + Rdxd 3 f (x,, z), g(x,, z) ( f 2 g+ f g) d = f g n d, ( ( f 2 g g 2 g f ) d = f n g f ) d n f n n f c 2011 9/(13)

4 xz z n A = (P, Q, R) n ( A) nd = A t ds t x t ( R Q ) ( P ddz + R ) ( Q dzdx + P ) dxd = Pdx + Qd + Rdz c 2011 10/(13)

4--8 2009 9 dω = ω D D D n D D ω n 1 dω ω k ω = i 1<i 2< <i k f i1i 2 i k dx i1 dx i2 dx ik dx i dx j = dx j dx i dx i dx i = 0 f d f = f 1 dx 1 + f 2 dx 2 + + f n dx n dω dω = i 1<i 2< <i k d f i1i 2 i k dx i1 dx i2 dx ik D xz 2 1 ω ω = Pdx + Qd + Rdz ( R Q ) ( P d dz+ R ) ( Q dz dx+ P ) dx d = Pdx+ Qd+Rdz f dx d f dxd (x,, z) (x,, z) (u, v, w) dx d dz = du dv dw (u, v, w) c 2011 11/(13)

4--9 2009 9 P p i j (x 1, x 2, x 3 ) (e 1, e 2, e 3 ) ( x 1, x 2, x 3 ) (ẽ 1, ẽ 2, ẽ 3 ) x i = p i j x j, ẽ i = p i j e j A j=1 j=1 A = 1 e 1 + 2 e 2 + 3 e 3 = ã 1 ẽ 1 + ã 2 ẽ 2 + ã 3 ẽ 3 A i ã i ã i = p i j j j=1 T 11 T 12 T 13 T = T 21 T 22 T 23 T i j = p i p jb T b T 31 T 32 T,b=1 33 T 2 T i j T + T i j + i j ϕt i j 0 T T T = T v = (v 1, v 2, v 3 ) w = Tv ( ) w j = T i j v j w T j=1 T i j = T ji T T i j = T ji T Tv = λv v ( 0) T λ 27 T T i jk P T i jk = p i p jb p kc T bc T 3 n,b,c=1 2 1 c 2011 12/(13)

4--10 2009 9 1 P i r i 1 i N F i r i F i F i N r i F i = 0 i=1 2 3 t (x,, z) ρ(x,, z, t) v(x,, z, t) ρ + (ρv) = 0 t 3 3 v(x,, z, t) v tds 4 ρ(x,, z) D(x,, z) D = ρ Q D d = ρd = Q 5 ω = (ω 1, ω 2, ω 3 ) P r = (x 1, x 2, x 3 ) ρ M = (M 1, M 2, M 3 ) M = r (ω r) ρ d I i j = ( k=1 xk 2 ρ d) δ i j x i x j ρ d M i = I i j ω j I i j j=1 c 2011 13/(13)