建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Similar documents
最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

noted by Kazuma MATSUDA (force) (mechanics) (statics) (dynamics) O F OA O (point of application) (line of action) (vector) F F F

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


鉄筋単体の座屈モデル(HP用).doc


B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI


1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

function2.pdf

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

29

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

高校生の就職への数学II

70 : 20 : A B (20 ) (30 ) 50 1

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

all.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

高等学校学習指導要領解説 数学編

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

コロナ社 Q&A Question and Answer Q&A

48 * *2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

OHP.dvi

( )

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

mt_4.dvi

重力方向に基づくコントローラの向き決定方法

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f


熊本県数学問題正解


main.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

all.dvi

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

( ) ± = 2018

O E ( ) A a A A(a) O ( ) (1) O O () 467


(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

untitled

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

数学の基礎訓練I

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

数値計算:常微分方程式

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

I

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

NCA1-V6-650 C9A1-V6-650

OM Z49-A

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1..FEM FEM 3. 4.

Vol. 62A ( ) Fundamental consideration on the redundancy of a steel Langer bridge based on nonlinear finite element analysis Isao Saiki, Kota Ka

高等学校学習指導要領

高等学校学習指導要領

力学的性質

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

ssp2_fixed.dvi

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

The Physics of Atmospheres CAPTER :

Transcription:

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10

ii F P = mα g = 980 cm/sec 2 m mg 1 1 m/sec 2 1 1 N 1 N 1 10 5 1 kn 1000 N mg m (g) (kg) (t) kg t N kn N/mm 2 kn m F 2001 4

iii 1977 1

1 1 1.1 1 1.2 2 2 3 2.1 3 2.1.1 3 2.1.2 4 2.2 5 2.2.1 1 5 2.2.2 7 2.2.3 8 2.2.4 10 2.3 13 2.3.1 1 13 2.3.2 14 2.3.3 15 3 18 3.1 18 3.2 18 3.2.1 18 3.2.2 18 3.2.3 19 3.3 20 3.3.1 20 3.3.2 20 3.4 20 3.5 21 3.5.1 21 3.5.2 21 4 28 4.1 28 4.1.1 28 4.1.2 30 4.2 33 4.3 36

v 5 1 38 5.1 38 5.2 38 5.3 42 6 2 48 6.1 48 6.2 49 7 1 53 7.1 53 7.2 54 7.3 56 7.4 57 8 2 62 8.1 62 8.2 65 8.2.1 65 8.2.2 66 8.3 67 8.3.1 67 8.3.2 70 8.3.3 73 9 77 9.1 77 9.2 78 9.3 81 9.4 85 10 88 10.1 88 10.2 89 10.2.1 2 89 10.2.2 90 10.2.3 92 10.3 95

vi 10.3.1 95 10.3.2 96 10.3.3 97 10.4 98 10.4.1 98 10.4.2 99 10.4.3 99 11 102 11.1 102 11.2 105 11.3 108 11.4 110 11.5 111 11.6 112 12 114 12.1 114 12.2 114 12.2.1 1 115 12.2.2 2 117 12.3 118 12.4 121 12.5 123 12.6 126 13 129 13.1 129 13.2 130 13.2.1 130 13.2.2 138 13.3 143 14 148 14.1 148 14.2 151 14.3 153 155 202 206

2 2.1 2.1.1 (force) (velocity) 0 1 (first law of motion) (acceleration) (mass) m a F a F m F am 2 (second law of motion) k F = kam (2.1) m = 1 g a = 1 cm/s 2 1 (dyne) (2.1) k 1 F = am (2.2) (principal of inertia)

4 2 (gravity) g = 980 cm/s 2 m[g] mg 1 kg 1 m/s 2 1 (newton) 1 kg 9.8 m/s 2 9.8 N 1 N 1 10 5 dyne 1 kn 1000 N A B B A 3 (third law of motion) (law of action and reaction) 2 A B A A 2.1.2 scalar vector (magnitude of force) (direction of force) (point of application of force) 3 (three elements of force) 2.1 O OA O (line of force action) (rigid body) 2.1

2.2 5 2.2 1 (resultant) (composition of forces) 1 (components) (decomposition of forces) 2.2.1 1 1 (coplaner forces) 1 O 2 P 1 P 2 2.2(a) 2 OACB OC 2 P 1 P 2 R (parallelogram of forces) (b) (c) 2 P 1 P 2 OAC OBC OC 2 P 1 P 2 R (triangle of forces) 2.2 2.3(a) O P 1 P 2,, P n (b) P 1 P 2 R 12 R 12 P i R 12 n O P 1, P 2,, P n R (b) (c) O P 1, P 2,, P i,, P n C OC R d

6 2 2.3 O C (force polygon) O C 0 2.4(a) P 1 P 4 P 1 ab P 2 bc (b) abcda a a aa P 1 P 4 R (Bow s notation) 2.4 2 O 2 P 1 P 2 R 2.5(a) R R = (P 1 sin α) 2 (P 2 P 1 cos α) 2 = P1 2 P 2 2 2P 1P 2 cos α tan θ = P 1 sin α P 2 + P 1 cos α (2.3)

2.2 7 2.5 2.6 2.5(b) α = π/2 (2.3) R = P1 2 + P 2 2 tan θ = P (2.4) 1 P 2 3 O 2.6 x y O x P i α i R x θ R = ( X) 2 ( Y ) 2 Y tan θ = X (2.5) X Y x y } X = Pi cos α i = R x Y = Pi sin α i = R y (2.6) (2.4) (2.5) 1 R 2.2.2 2.7 P 2 P 1 P 2 P 1 P 2 2 2.8 P x y x y

8 2 2.7 2.8 α x P θ P x P y P x = sin(α θ) P P y = sin θ sin α sin α P (2.7) x y (α = π/2) P x P y 2.9 P x = P cos θ, P y = P sin θ (2.8) 2.9 2.2.3 1 1 (rotation) (moment) N cm kn m 2.10 O 1 P h O P M (+) M = +P h (2.9) O P OO 1 A 2 2.11 2 P 1 (OA) P 2 (OB) R(OC)

2.2 9 2.10 2.11 O 1 P 1 P 2 M 1 M 2 M 1 M 2 R M 2.11 M 1 = OAO 1 2 = OO 1 h 1 M 2 = OBO 1 2 = OO 1 h 2 M = OCO 1 2 = OO 1 h h 1 + h 2 = h M = M 1 + M 2 1 M 1 M 2, M n M M 1 + M 2 + + M n = M (2.10) (Varignon s theorem) 2 2.12 2 2 0 (couple) M (+) 2.12

4 4.1 4.1.1 4.1(a) AB 4.1

4.1 29 P AB AC CB 4.1(b) AC C C CB N CB Q CB M CB A P x y N CB Q CB M CB X = 0 P cos θ + NCB = 0 N CB = +P cos θ Y = 0 P sin θ + QCB = 0 Q CB = +P sin θ MC = 0 M CB + P S = 0 M CB = +P S (4.1) 4.1(c) CB C AC N CA Q CA M CA X = 0 NCA + P cos θ = 0 N CA = +P cos θ Y = 0 QCA + P sin θ = 0 Q CA = +P sin θ MC = 0 + M CA P S = 0 M CA = +P S (4.2) (4.1) (4.2) N CA + N CB = 0 Q CA + Q CB = 0 + M CA M CB = 0 (4.3) C 4.1 d C 2 1 N CA = N CB = N C Q CA = Q CB = Q C M CA = M CB = M C (4.4) C (internal force) (stress) C 3 N C C (axial force) Q C C (shearing force) M C C (bending moment)

30 4 3 1 1 1 4.1.2 4.4.1 1 + 4.2(a) AB P 3.5 V A = + b l P sin θ, V B = + a l P sin θ, H A = +P cos θ 4.2

4.1 31 4.2(b) AB AC N = +H A = +P cos θ, CB N = 0 N 4.2(c) N 4.2(c) AB (axial force diagram) N (A. F. D. ) 2 + 4.2(a) 4.3(a) AB AC Q = +V A = + b P sin θ, l CB Q = +V A P sin θ = a l P sin θ Q 4.3(b) Q 4.3(b) 4.3 AB (shearing force diagram) Q (S. F. D. ) 4.3(c) 3

32 4 + 4.2(a) 4.4(a) AB AC M = +V A x = + b l P sin θ x x = 0 M A = 0 x = a M C = + ab P sin θ l a(l x) CB M = +V A x P sin θ x a = + P sin θ l x = a M C = + ab P sin θ x = l M B = 0 l AC CB M x 1 M 4.4(b) M 4.4(b) AB (bending moment diagram) M (B. M. D. ) M 4.4(b) M 4.4(b) M 4.4 4.4(c) V A B +V A l = +bp sin θ B BD A D P sin θ B P sin θ b D DB C CE AD E B AEB M 1 3 N kn N cm N m kn cm kn m

4.2 33 4.5 + 4.5 (stress diagram) 4.2 3.5 4.1 4.6(a) dx (b) w dx M Q A 4.6

34 4 M + dm Q + dq + M Q 4.1 4.6(b) + dq Y = 0 w dx Q + (Q + dq) = 0 dx = w ( ) dx M1 = 0 M + Q dx w dx (M + dm) = 0 2 (4.5) 2 dm dx = Q (4.5) (4.6) (4.6) d 2 M dx 2 = dq = w (4.7) dx M = Q dx (4.8) (4.6) dm/dx 4.6(b) M α M α M α M 4.7 α M + 4.8 + (4.8) (4.5) (4.7) dq/dx 4.7 4.8

4.2 35 4.6(b) Q α Q α Q M Q M Q 1 M Q 4.9 M Q 4.9 4.9(a) M = 0 Q = 0 4.9(b) M = Q = 0 4.9(c) M = Q = 2 M Q 4.10(a) (concentrated load) M Q 3 M Q 4.10(b) (uniform load) M 2 Q 4 M Q 4.10(c) M Q M Q

36 4 w 4.10 4.3 3.4 1 (statically determinate beam) 2 (statically determinate rigid frame) 3 (statically determinate truss) 4 (statically determinate arch) 3.5 4.1 4.2

4 37 4 4.1 4.11 AB 4.11

206 A acceleration 3 axial force 29 axial force diagram 31 B bending moment 29 bending moment diagram 32 bending stress 116 Bow s notation 6 buckling 148 buckling length 153 buckling load 148 buckling unit stress 151 C cantilever 38 center of curvature 116 center of section 103 centroid 103 components 5 composition of forces 5 compressive strain 96 compressive stress 89 concentrated load 35 condition of equilibrium of forces 16 conjugate beam 140 coplaner forces 5 core of section 125 couple 9 Cremona s stress diagram 80 Culmann s method 82 curvature 116 D decomposition of forces 5 deflection 130 deflection curve 130 deformation 95 direction of force 4 dyne 3 E eccentric distance 124 eccentric force 124 elastic body 98 elastic limit 98 elastic load 138 elasticity 98 equilibrium of forces 13 Euler, L 150 Euler-Bernoulli s assumption 115 external force 18 F first law of motion 3 fiber stress 117 fixed end 18 flexural rigidity 130 force 3 force polygon 6 G Gerber, H. 48 gerber beam 38 Gordon-Rankine 154 gravity 4 H hinged end 18 Hooke s law 98 I indirect load 66 influence line 50 internal force 29 J Johnson, J. B. 154 joint 18 L lateral strain 96 law of action and reaction 4 limit of proportionality 98 line of force action 4 linear strain 96 lines of principal stress 127 link polygon 11 load 21 longitudinal strain 96 M magnitude of force 4 mass 3 mean intensity of shearing stress 89 member 18 method of member substitution 85 method of moment 82 method of section 81 modulus of elasticity 98 modulus of rigidity 99 modulus of section 110 Mohr s stress circle 92 Mohr s theorem 140 moment 8

207 moment of inertia of area 105 N neutral axis 114 neutral plane 114 newton 4 normal strain 96 normal stress 88 P panel point 18 parallelogram of forces 5 parmanent strain 98 pin 18 pin joint 20 plane truss 77 planes of principal stress 93 plasticity 98 point of application of force 4 Poisson s number 96 Poisson s ratio 96 polar moment of inertia of area 112 principal axis of area 109 principal moment of inertia of area 109 principal of inertia 3 principal shearing stress 93 principal stress 93 product moment of inertia of area 107 R radius of curvature 116 radius of gyration of area 111 rahmen 20 reaction 21 residual strain 99 resultant 5 rigid body 4 rigid frame 20 rigid joint 20 Ritter s method 82 roller end 18 rotation 8 S scalar 4 second law of motion 3 shear modulus 99 shearing force 29 shearing force diagram 31 shearing strain 97 shearing stress 88 simple beam 38 simple support 18 slenderness ratio 151 slope 130 space truss 77 stable structure 20 statical moment of area 102 statically determinate structure 21 statically determinate truss 77 statically indeterminate structure 21 statically indeterminate truss 77 statics 13 strain 95 stress 29, 88 stress diagram 33 structural design 1 structural mechanics 1 structural planning 1 structure 1, 18 support 18 symmetrical load 67 T tensile strain 96 tensile stress 89 Tetmajer, L. V. 154 third law of motion 4 three elements of force 4 three hinged structure 24 three hinged truss 86 triangle of forces 5 truss 20, 77 U uniform load 35 unit stress 88 unstable structure 20 V Varignon s theorem 9 vector 4 velocity 3 virtual load 138 volume modulus 99 volumetric strain 97 Y Young s modulus 99

208 89 30 96 20 7 50 1 3 2 3 3 4 98 50 150 150 115 29, 88 33 88 130 18 8 111 18 21 74 138 3 38 53, 54 18 82 3 66 70 132 140 116 116 116 9 9 65 80 80 48 38, 48 99 20 20 1 1 1, 18 1 4 5 18, 19 154 151 148 151 148 153 4 57 24 86 99 29 31 3 18 35 4 127 93 93 93 109 154 6 88 95, 96 4 103 21 77 38 53 31 32 13 81 18 78 88 99 95, 97 29 31 96 3 98 67 99 97 3 99 96 130

209 130 130 38 56 98 138 130 98 98 98 154 102 112 110 107 111 105 125 109 3 4 5 4 4 5 4 3 13 16 5 5 4 8 114 114 154 35 20, 77 77 29 4 122 6 9 21 95 154 89 30 96 98 18 20 20 18 85 21 77 117 98 8 31 32 5 89 83 18 77 115 5 4 95 124 124 96 96 116 130 29 32 80 2 82 92 140 99 99 96 20 77 15 82 11 18

1950 1954 1958 1964 1993 1963 1971 1972 2005 2006 1983 1985 2004 1985 2010 2010 2012, 1990 1992 1995 1999 2007 2008

I ( 3 ) c 2015 1977 2 15 1 1 1999 9 25 1 23 2001 5 10 2 1 2014 2 10 2 13 2015 11 20 3 1 1-4-11 102-0071 03-3265-8341 FAX 03-3264-8709 http://www.morikita.co.jp/ Printed in Japan ISBN978-4-627-50043-3