x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Similar documents
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


08-Note2-web

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

高等学校学習指導要領

高等学校学習指導要領

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

meiji_resume_1.PDF

chap1.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

数学演習:微分方程式

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


keisoku01.dvi

1 c Koichi Suga, ISBN

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

Korteweg-de Vries

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

c 2009 i

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

振動と波動

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Note.tex 2008/09/19( )

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

量子力学 問題

2011de.dvi

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

85 4


pdf

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

I ( ) 2019

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

B ver B

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Gmech08.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Chap11.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

function2.pdf

TOP URL 1

- II


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

DVIOUT

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

tnbp59-21_Web:P2/ky132379509610002944

no35.dvi

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

v er.1/ c /(21)

Transcription:

2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin ωt (2.2) x = A sin ωt, ẋ = Aωcosωt (2.3) ζ = Aω = const. : (2.1) dζ dt iωζ = F (t)/m 2-2

D Dy(x) = f(x) y = g(x) y = g(x) + h(x) D(g + h) = Dg + Dh = f, Dh = 0 (2.4) h ζ = Ae iωt A t ζ = A(t)e iωt dζ dt iωζ A(t) = = Ȧeiωt + Aiωe iωt Aiωe iωt = Ȧeiωt = F (t)/m t 0 iωt F (t) dte m + A 0 ζ(t) = ẋ + iωx = e iωt t 0 iωt F (t) dte m + A 0e iωt A 0 = ζ(0) x ζ ω F (t) 2-3

2.2 2.2.1 ẍ + ω 2 x = F 0 m ( ẍ + ω 2 x F ) 0 = 0 mω 2 x = 0 x = F 0 /mω 2 2.1 : x(t) = F 0 ẋ(0) (1 cos ωt) + sin ωt + x(0) cos ωt mω2 ω x(t) F 0 mω 2 = ( x(0) F 0 mω 2 ) cos ωt + ẋ(0) sin ωt ω 2.2 F = ft : F (t) = ft ζ(t) = f m eiωt t 0 dtte iωt ω x(t) = f (ωt sin ωt) mω3 2-4

x t 2.2.2 F (t) = f cos ω t : : ẍ + ω 2 x = f m cos ω t ẍ + ω 2 x = f m eiω t 2-5

ω ω x = Ae iω t A( ω 2 + ω 2 )e iω t = f m eiω t A = f 1 m ω 2 ω 2 x = f 1 m ω 2 ω cos 2 ω t x = a cos(ωt + φ) + f 1 m ω 2 ω cos 2 ω t x(0) = 0, ẋ(0) = 0 (i) a cos φ + f 1 m ω 2 ω 2 = 0 (2.5) (ii) 0 = aω sin φ (2.6) (ii) sin φ = 0 φ = 0 φ = π φ = 0 : a = f 1 m ω 2 ω 2 φ = π a = f 1 m ω 2 ω 2 cos(ωt + π) = cos ωt 2-6

x = f 1 m ω 2 ω 2 (cos ω t cos ωt) (2.7) 2.3 : F (t) F (t) = f 2 ( ) e iω t + e iω t x(0) = 0, ẋ(0) = 0 ζ = f 2m eiωt t 0 ( ) dt e i(ω ω )t + e i(ω+ω )t ζ = f { i ( ) 2m eiωt e i(ω ω )t 1 ω ω = if 2m + i ( ) } e i(ω+ω )t 1 ω + ω { 1 ω ω ( e iω t e iωt ) + 1 ω + ω ( e iω t e iωt ) } ω : x = f m(ω 2 ω 2 ) (cos ω t cos ωt) (2.7) ω ω ω = ω + ω ω 0 f ωt cos(ωt + ωt) cos ωt lim x(t) = lim ω ω ω 0 m (2ω + ω)( ω) ωt f = t sin ωt (2.8) 2mω 2-7

x(t) : ω = ω ω ω (2.8) cos A cos B = 2 sin A + B 2 sin A B 2 (2.9) cos(x + Y ) = cos X cos Y sin X sin Y cos(x Y ) = cos X cos Y + sin X sin Y A + B = 2ω + ω, A B = ω, ω 2 ω 2 = ω(2ω + ω) x = 2f m 1 ω(2ω + ω) sin ( ω + ω 2 ) t sin ( ω 2 ) t (2.10) sin 2π/(ω + ( ω/2)) 2π/ω sin 4π/ ω 0 4π ω t 2-8

ω 2.2.3 ẍ + 2λẋ + ω 2 x = f t m eiω x = Ae iω t A A = f 1 m ω 2 ω 2 + 2iλω 1 A+iB = A ib A 2 +B 2 A = f ω 2 ω 2 2iλω (2.11) m (ω 2 ω 2 ) 2 + 4λ 2 ω 2 A ib = A 2 + B 2 e iφ, tan φ = B A ω 2 ω 2 2iλω = (ω 2 ω 2 ) 2 + 4λ 2 ω 2 e iφ (2.12) tan φ = 2λω ω 2 ω 2 (2.13) φ ω 2 ω 2 2λω (ω ω ) 2 + 4λ 2 ω 2 2-9

A = f 1 m (ω2 ω 2 ) 2 + 4λ 2 ω 2 e iφ (2.14) (ω 2 (ω 2 2λ 2 )) 2 + 4λ 2 (ω 2 λ 2 ) ω ω = ω 2 2λ 2 x f 1 m 2λ ω 2 λ 2 ω = ω 2 2λ 2 ω (2.13) ω = ω tan φ λ 0 φ (2.14) ω 2 ω 2 2iλω e iφ ω 2 ω 2 2iλω ω ω ω = 0 ω = ω 2-10

ω = 0 A φ = 0ω A φ ( e iφ ω = ω (i/2λω ) φ = π/2 ω A ω ω φ = π λ φ 0 π (2.14) λ = 0 ω = ω A : ω ω ( ) x = R(Ae iω t iφ ) t x = A cos(ω t φ). dt dx = A ω sin(ω t φ)dt. f cos ω t T = 2π/ω W = 1 T T 0 dtf cos ω t ( A ω sin(ω t φ)). cos α sin β = 1 (sin(α + β) sin(α β)), 2 sin(2ω t φ) W = 1 2 f A ω sin φ. φ ω 2 ω 2 2λω (ω ω ) 2 + 4λ 2 ω 2 2-11

2λω sin φ = (ω2 ω 2 ) 2 + 4λ 2 ω 2 W = f 2 4λ 2 ω 2 4mλ (ω 2 ω 2 ) 2 + 4λ 2 ω 2 A 2 ((2.14) ) ω ω 2 [ W = f ( ) ] 2 ω 2 ω 2 2 1 1 + 4mλ 2λω λ ω 0 = ω ( ω 2 ) = W 2λ ω ω ω δ ω ω ω [ ( ) ] 2 1 ωδ(2ω + ωδ) 1 + 2λ(ω + ωδ) 1 1 + ( ωδ λ 1/2 ω = ω ωδ = ±λ 2-12 ) 2.

Q 1 2 δ = ω 2λ Q (Quality factor) 2.2.4 C E R L: C: R: E: L L I Φ Φ = LI E induced = dφ dt = LdI dt 2-13

Φ I C Q Q = CV E RI + Q = E + E induced = E L di }{{} C dt V I = dq/dt or L d2 Q dt + RdQ 2 dt + 1 C Q = E (2.15) d 2 Q dt + R dq 2 L dt + 1 LC Q = E L (2.16) or m d2 x dt + αdx + kx = F 2 dt (2.17) d 2 x dt + 2λdx 2 dt + ω2 x = F m (2.18) Q x ( ) Φ L dq dt mv = p L m E F () R α 1 C k 2-14 ( )

: E = E 0 cos ω t E(t) = E 0 e iω t I(t) = I 0 e iω t I 0 ZI 0 e iω t = E 0 e iω t Z = iω L + R + 1 iω C = E 0/I 0 Z ( / ) ω = 1 LC, λ = R 2L I(t) = I 0 cos(ω t φ) I 0 = E 0 2λω R (ω2 ω 2 ) 2 + 4λ 2 ω 2 tan φ = 2λω ω 2 ω 2 I 0 2 W I 0 ω = ω φ = ω 2λ = 1 L R C 2-15