q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

Similar documents
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Kaluza-Klein(KK) SO(11) KK 1 2 1

,,..,. 1

main.dvi

SUSY DWs

SO(2)

素粒子物理学2 素粒子物理学序論B 2010年度講義第11回

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

susy.dvi

TeV b,c,τ KEK/ ) ICEPP

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Muon g-2 vs LHC (and ILC) in Supersymmetric Models

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

nenmatsu5c19_web.key

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Supersymmetry after Higgs discovery

LLG-R8.Nisus.pdf

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


2017 II 1 Schwinger Yang-Mills 5. Higgs 1

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

kougiroku7_26.dvi

nakayama.key

neutrino

Gauge Mediation at Early Stage LHC

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

all.dvi

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

TOP URL 1

0406_total.pdf

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

pptx

本文/目次(裏白)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

all.dvi

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4/15 No.

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Introduction 2 / 43

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

arxiv: v1(astro-ph.co)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

linearal1.dvi

main.dvi

余剰次元のモデルとLHC

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

02-量子力学の復習

n ( (

YITP50.dvi

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

all.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

スライド タイトルなし

Gmech08.dvi

プログラム

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

Einstein ( ) YITP

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

中央大学セミナー.ppt

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Happy 60th Birthdays! Ishikawa-san & Kawamoto-san

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

抄録/抄録1    (1)V

untitled

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

DaisukeSatow.key

総研大恒星進化概要.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

tnbp59-21_Web:P2/ky132379509610002944

nsg04-28/ky208684356100043077

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号


December 28, 2018

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Confinement dual Meissener effect dual Meissener effect

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Transcription:

Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple semi-simple group Georgi and Glashow underlying gauge group geuge Standard Model gauge group Standard Model gauge SU(3) SU(2) U() gauge SU(N) rank N gauge gauge SU(5) GUT embed gauge adjoint gauge δa µ = iω a [T a, A µ ] where T a 5 5 traceless Hermitian matrices, 24 gauge generator Standard Model break up T a (T a ) j i T a SU(5) 5 (T a ) i j 5 j 5 q q 2 5 = q 3 L L 2 generator T a T a = ( λ a ) 2 0 0 0 T i = ( ) 0 0 σ 0 i 2

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices 2 2 3 3 (Xa i )b J = δb a δi j raising and lowering operator generator gauge boson quark lepton baryon e.g. p π 0 e + gauge boson Ỹ ordinary hypercharge 5 5 d d 5 i 2 = d 3 L d right-handed down-type quark. 5 gauge generator T at L 2 (T at ) i j5 j hypercharge Y Y = 60 3 Ỹ -Gell-Mann Q = I 3 + Y 2 Dine (6.7) d Y gauge SU(5) Standard Model gauge coupling Weinberg θ W SU(5) gauge coupling g SU(3) SU(2) gauge coupling g hypercharge coupling g gỹ = g 2 Y 2

SU(5) gauge group 5 fermion gauge SU(2) U() Dine 2 notation Weibnerg sin 2 θ W = g 2 g 2 + g 2 = 3 8 Weinberg SU(5) GUT Standard Model 5 fermion SU(3) triplet SU(2) doublet left-handed quark 6 Q i a SU(3) triplet SU(2) singlet right-handed quark 6 u a, d a SU(3) singlet SU(2) doublet left-handed lepton 2 L i SU(3) singlet SU(2) singlet right-handed lepton e 5 5 0 SU(5) 0 0 2 5 f i f j = 2 ( f i f j + f j f i ) + } {{ } 2 ( f i f j f j f i ) } {{ } 5 i j 0 i j 0 SU(3) index right-handed up-type quark 0 SU(3) SU(2) left-handed quark 0 SU(2) right-handed lepton Standard Model left-handed u-quark SU(3) 3 SU(2) 2 I = + 2, Q = +2 3 Y = 3 left-handed d-quark SU(3) 3 SU(2) 2 I = 2, Q = 3 Y = 3 right-handed u-quark SU(3) 3 SU(2) singlet I = 0, Q = + 2 3 Y = 4 3 right-handed d-quark SU(3) 3 SU(2) singlet I = 0, Q = 3 Y = 2 3 left-handed neutrino SU(3) singlet SU(2) 2 I = + 2, Q = 0 Y = 3

left-handed electron SU(3) singlet SU(2) 2 I = 2, Q = Y = right-handed electron SU(3) SU(2) singlet I = 0, Q = Y = 2 0 hypercharge Y 0 generator 0 i j (T a ) i k 0 k j + (T a ) j k 0 ik T a Y 0 Y 0 = 0 Y 0 2 + Y 2 0 2 Y 0 3 + Y 3 0 3 Y 0 + Y 4 0 4 Y 0 + Y 5 0 5 0 Y 2 0 23 + Y 3 0 23 Y 2 0 24 + Y 4 0 24 Y 2 0 25 + Y 5 0 25 0 Y 3 0 34 + Y 4 0 34 Y 3 0 35 + Y 5 0 35 0 4 3 0 2 4 3 0 3 0 4 3 0 23 = 3 0 4 0 3 0 5 3 0 24 3 0 25 3 0 34 3 0 35 0 2 0 45 0 0 Y 4 0 45 + Y 5 0 45 0 hypercharge SU(5) 5 0 SU(3) SU(2) 0 hypercharge consistent 6. Cancellation of anomalies gauge boson 3 anomaly d abc = tr T a { T b, T c} Peskin Dine (6.) {T a, T b } = d abc T c 5 0 anomaly 5 generator d abc 5 = tr(t c T b T a + T b T c T a ) 4

0 2 generator 2 5 generator (5 i 5 j ) ( T { a T b, T c}) kl (5 k 5 l ) i j ( { T a T b, T c}) kl (T a ) j i 0 kl i j 0 0 i j (( { T a T b, T c}) kl ( T { a T b, T c}) ) lk 0 kl 2 i j i j kl i j 2 d abc = 2 ( δ i k δ j l δi l δ ( k) { j T a T b, T c}) kl i j 5 6.2 Renormalization of couplings SU(5) GUT high energy M GUT high-energy coupling low-energy running coupling constant ( α i (µ) = α GUT (M GUT) + bi 0 4π log β- -loop b i 0 b 0 = 3 C A 4 3 c(m) f N (m) f µ M GUT 3 c(m) φ N(m) φ m color fermion N (m) f N (m) φ m scalar C A SU(N) N Casimir operator for adjoint c f, c φ 2 tr(t a T b ) = c f δ ab for fermion scalar SU(3) C A = 3 c (i) f N (i) f = 2 6 = 3 RGB 3 u, d 2 fermion b 3 0 = 7 8 ) SU(2) C A = 2 6 5

Ross, Grand Unified Theories (984) Mohapatra, Unification and Supersymmetry running coupling constant Dine U() coupling SU(2) coupling M GUT 0 5 GeV SU(3) coupling 7 standard deviations standard deviation M GUT low-energy SUSY 6.3 Breaking to SU(3) SU(2) U() SU(5) scalar Φ adjoint scalar gauge δφ = ω a [T a, Φ] Higgs Higgs Φ Φ = vỹ SU(3),SU(2),U() generator Φ X SU(5) invariant 4 δ tr Φ 2 = 2ω a tr[t a, Φ]Φ = 0 δ tr Φ 4 = 4ω a tr[t a, Φ]Φ 3 = 0 SU(5) Φ V = m 2 tr Φ 2 + λ tr Φ 4 + λ ( tr Φ 2) 2 Φ = diag.(a, a 2, a 3, a 4, a 5 ) Φ traceless Lagrange multiplier minimum vỹ V tr Φ 2 = 2 v2 tr Φ 4 = v 4 60 2 (24 + 2 4 + 2 4 + 3 4 + 3 4 ) = 7 20 v4 V = 2 m2 v 2 + ( ) 7 4 30 λ + λ v 4 6

v = m 7 30 λ + λ fluctuation Φ SU(5) SU(3) SU(2) U() fluctuation δφ = (, ) + (8, ) + (, 3) + (3, 2) + (3, 2) ( ) SU(3) 2 SU(2) (,) singlet Ỹ (8,) SU(3) adjoint SU(2) singlet T a (,3) SU(3) singlet SU(2) adjoint T i (3,2) (3,2) off-diagonal X SU(2) 2 2 real representation (3,2) (3,2) δv leading order δφ = diag.(x, x 2, x 3, x 4, x 5 ) δ tr Φ 2 δ tr Φ 4 x leading order x + x 2 + x 3 x 4 + x 5 (,) leading order minimal 2 fluctuation 6.4 SU(2) U() breaking Higgs SU(2) U() fundamental scalar SU(5) 5 ( ) Hc H = H d H c color triplet H d ordinary Higgs doublet H V(H) = µ 2 H 2 + λ 4 H4 V H SU(5) SU(5) Goldstone boson 7

electroweak symmetry breaking scale µ λ Higgs triplet doublet mass W boson Z 0 boson baryon lepton H Φ coupling V Φ H = ΓH ΦH + λ H H tr Φ 2 + λ H Φ 2 H V(H) + V Φ H H c H d λ, λ. µ 2 = + 3 60 Γv + ɛ, λ = λ = λ = 0 Dine Φ m 2 H c = 5 60 Γv ɛ, m 2 H d = ɛ m Hc GUT m Hd electroweak scale Γv ɛ 0 3 hierarchy problem M W M GUT fermion mass SU(5) Yukawa coupling L Y = y ɛ i jklm H i 0 jk 0 lm + y 2 H i 5 j 0 i j eq.(6.2) index H v.e.v. y coupling up-type quark mass y 2 coupling lepton down-type quark mass L Y Q, L, u, d generation tree-level m τ = m b 3 lepton quark e.g. m d 0 e Higgs higher dim. operator SUSY GUT M GUT 0 2 M Pl quark lepton 0 4 M weak 8

6.5 6.6 pass 6.7 Other groups Grand unification SU(5) O(0) GUT O(0) 0 generator 0 0 real 45 rank 5 GUT commuting generator 6 Standard Model O(0) SU(5) O(0) generate x A, (A = 0) O(0) x A x A O(0) x z = x + ix 2, z 2 = x 3 + ix 4, z 3 = x 5 + ix 6, z i z i O(0) SU(5) O(0) 0 SU(5) 5 + 5 O(0) adjoint A AB SU(5) A AB = A iī + A i j + Aī j A iī 24 of SU(5) SU(5) adjoint singlet O(0) U() component A i j 0 of SU(5) Aī j 0 of SU(5) 45 O(0) 6 9

O(0) 0 γ- {Γ I, Γ J } = 2δ IJ γ- 6 approach 6 SU(5) 0 γ- fermion creation annihilation operator a = 2 (Γ + iγ 2 ) a 2 = 2 (Γ3 + iγ 4 ) a 3 = 2 (Γ5 + iγ 6 ) a = 2 (Γ iγ 2 ) a 2 = 2 (Γ3 iγ 4 ) a 3 = 2 (Γ5 iγ 6 ) {a i, a j } = {aī, a j } = 0 {a i, a j } = δ i j 5 fermion state Lie a i 0 state ground state ground a i 0 = 0 for i 0 creation operator aī O(0) 32 32 4 chirality γ 5 Γ O(0) generator S IJ = i 4 [ΓI, Γ J ] Γ O(0) chirality Γ Γ 0 = + 0 0 aī state Γ = + 0 aī state Γ = aī 0 SU(5) 5 aīa j a k 0 SU(5) 0 a a 2 a 3 a 4 a 5 0 SU(5) singlet 3 SU(5) 3 2 0 ɛ i jklm ī j k lm 0

O(0) 6 SU(5) 5 + 0 + 5 + 0 Standard Model SU(3) SU(2) singlet 0 Standard Model Standard Model coupling mass M GUT O(0) gauge mass left-handed neutrino coupling Standard Model right-handed neutrino seesaw neutrino mass