Similar documents
( )

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

A 99% MS-Free Presentation

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

プログラム

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P


本文/目次(裏白)

08-Note2-web

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

sec13.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

LLG-R8.Nisus.pdf

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

pdf

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Contents 1 Jeans (


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

4 19

H.Haken Synergetics 2nd (1978)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


untitled

gr09.dvi

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

総研大恒星進化概要.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

IA

untitled

š ( š ) 2,973,655 3,774,545 4,719,254 1,594,319 3,011,432 1,517,982 1,493, ,503 2,591, , , , , ,000 f21 500,000 24

Note.tex 2008/09/19( )

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

untitled


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Erased_PDF.pdf

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

A

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

K E N Z OU

( ) ( )


( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

201711grade1ouyou.pdf

第10章 アイソパラメトリック要素

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

untitled

: , 2.0, 3.0, 2.0, (%) ( 2.

第5章 偏微分方程式の境界値問題

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

all.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

量子力学 問題

官報(号外第196号)


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H



5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

( ) ,

I ( ) 2019

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

meiji_resume_1.PDF



6.1 (P (P (P (P (P (P (, P (, P.101

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法


untitled



untitled

i

Transcription:

1. : 1.5 2. ( ): 2.5 3. : 1

( )

/ minimum solar nebula model

( )

http://antwrp.gsfc.nasa.gov/apod/ap950917.html

( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

( ) SDSS

: d 2 r i dt 2 ÿ j i Gm jr ij r 3 ij

: : :

=

Newton

3 0.1%

19

20 20

2

( )

3 3 (2 )

3 3

3 2,3

20 Figure-8 Solution

Figure-8 solution 3 (0.005% )

d 2 x fpxq (1) dt2 xp0q x 0, dx dt t 0 vp0q v 0 (2)

1 dx{dt fpxq xpt ` tq xptq ` tfpxptqq 1

1987 2

e 2 8.5

45 2

2009 Nature :

Laskar and Gastineau 2009 ( 0.38mm)

( )

( ) )

X X

1

Ill-posed problem??

:

2 + 3 2 +

fpx, vq : 6 fpx, vqdxdv dxdv

Bf Bt ` v f Φ Bf Bv 0, (3) Φ 2 ϕ 4πGρ. (4) G

ρ ρ m ż dvf, (5)

.

( ) : ( )

( ) : ( ) ( ) ( )

Bv Bt Bρ ` pρvq 0 Bt (6) ` pv qv 1 p Φ ρ (7) 2 Φ 4πGρ (8)

ρ: t: v: p: Φ: G:

ρ, p, v, Φ ρ ρ 0 ` ρ 1 0 1

Bρ 1 Bt ` pρ 0v 1 q ` pρ 1 v 0 q 0 (9) Bv 1 Bt `pv 0 qv 1`pv 1 qv 0 ρ 1 p 1 0 p 1 Φ ρ 2 1 (10) 0 ρ 0 v s 2 Φ 1 4πGρ 1 (11) ˆdp p 1 ρ 1 v 2 s dρ ρ 1 (12) 0

0 Bρ 1 Bt ` ρ 1 pρ 0 v 1 q 0 (13) Bv 1 Bt 1 ρ 0 p 1 Φ 1 (14) 2 ρ 1 B 2 ρ 1 Bt 2 v2 s 2 ρ 1 4πGρ 0 ρ 1 0 (15)

2

( ) ρ 1 Ce ipk x ωtq (16) ω 2 v 2 s k2 4πGρ 0 (17) k 2 J 4πGρ 0 v 2 s (18)

k ą k J ω k k J ω 0 k ă k J ω (16)

1{k J

k J : λ J λ J c π Gρ 0 v s (19) : M J v 2 s GM J {λ J M J ( λ J )

0 : ( )

1996

10 10 10 4 6 +10 7

M82

X NASA Chandra X

Ñ Ñ

2 2

Ó

dp dm M 4πr4, (20) dr dm 1 4πr 2 ρ, (21) Mprq r p ρ 1

( ) dp dr ρm r 2 (22) p ρt (23)

(3) ρ9r 2 ( ) ( ) r Ñ 8

: (D ) : D ( ) 1

r, m, t G 1 1{r 1{m r{m 2 ( ) t{m ( )

D 709 2 D

Ñ Ñ Ñ Ñ Ñ

Bf Bt Apfpxqq (24) A f 2 f f 0 pxq Apf 0 pxqq 0 f f 0 ` df df

(1) df df

(2) : df f 0 df : Bdf Bt Bpdfpxqq (25) Bpαdf 1 pxq ` βdf 2 pxqq αbpdf 1 pxqq ` βbpdf 2 pxqq (26)

(3) df 1 df 1 df 1, df 2 df 1 ` df 2

λ λdf Bpdfq (27) df e λt df 0

λ

f 0 f 0 df

df

, D 1.05 λ:

(2), D 10

(3), D 100

, D 709

, D 1000

gravothermal instavility V. Antnov (1961) : Hachisu & Sugimoto (1978)

Hachisu et al. (1978) : Cohn (1980):

3

( )

: 10 9 1%

:

1 : (6 ) ( )

k ω v s Σ κ ω 2 κ 2 2πGΣ k ` v 2 s k2 (28) :

R ΦpRq R Φ eff Φ ` L2 z 2R 2 (29) d 2 R dt 2 dφ eff dr (30) R R 0 ` x d 2 x dt 2 κ2 x (31)

κ 2 d2 Φ dr 2 ` 3 R 0 dφ dr (32) ( R R 0 )

κ Ω Ω 2 1 dφ R dr κ 2 R 0 dω 2 (33) dr ` 4Ω2 (34) κ Ω 2Ω Ω ă κ ă 2Ω (35)

(28) ω 2 v 2 s k2 4πGρ 0 (36) ω 2 κ 2 2πGΣ k ` v 2 s k2 (37)

v 2 s k2 4πGρ 0 2πGΣ k 3 = 2 κ 2

0 v s 0 0 k crit κ2 2πGΣ ; λ crit 2π k crit 4π2 GΣ κ 2 (38) ( ) : 2

k ω κ 2 2πGΣ k ` v 2 s k2 ě 0 (39) v s κ πgσ ą 1 (40) Q v sκ πgσ (41) Toomre Q

( ) Q σ Rκ 3.36GΣ ą 1 (42) σ R (π 3.36)

: R

3 λ crit λ crit 4π2 GΣ κ 2 (43) 1 λ crit Σ (κ 1 ) Σ λ crit

1 0.1 λ crit Q

tight winding

tight-winding tight winding : ( ) = m pω mωq 2 κ 2 2πGΣ k ` v 2 s k2 (44)

tight-winding m 0 mω tight-winding Ω

グローバルなスパイラルモード 実際の銀河では 全く tight-winding も局所近似 も成り立たないような大き なスケールでのスパイラル 構造が見つかっている 中間赤外で見える低温のガ スは複雑な構造をもつ 大きなスケールでのスパイ M101 銀河 スピッツアー衛星 ラルアームがあるように見 での赤外線画像 える 多くの銀河についてそういう構造があるように見える

( )

( ) 1. ( Lin-Shu ) 2.

( )

1970 1980 Q 1 Q

Q 90 (Fujii et al, 2011) Q

Swing Amplification swing amplification

Swing Amplification(2) leading arm ( ) trailing trailing leading trailing

Swing Amplification(3) leading arm N

Q 1970

:

Katz and Gunn 1992 + + 1 Cray YMP 1000 1 : 1000

Saitoh et al. 2005 + + 200 GRAPE-5 1 (!) animation 1 : 1

:

1 : 4-5 : 1000 8

1-2

Saitoh et al. 2007 15 15

Star formation with SPH Large scale structure formation with AMR

animation (Baba et al 2009) 1 2

SPH Cray XT4 ASURA 10pc (Ð 500pc) 10K (Ð 10 4 K ) 3000M d (Ð 10 5 M d )

高分解能モデルと観測

低分解能モデルと観測

2006: Xu et al, Science 311, 54 Nov 2008: Burst of results from VLBA Several data from VERA (Compiled by Dr. Asaki)

( 30km/s)

( ) ( )

星のスパイラルの運動 星の運動の円運動からのずれ スパイラルアームは実体 密度波では ない 古い星の平均の円運動からのずれ も結構大きい キロパーセクスケールの構造があ る

+

: -

: -

Svensmark 2007 :

1.4 ( ) : (???)

( )

( )

: :

: ( ) : :

: 6-10

(Fujii et al. 2010) animation a1 animation a2 animation b1 Stable against radial mode (a1, a2) Spiral arms form They seem to be maintained for very long time

: ( )