1 (utility) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utility) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) max x 1,x 2 u(

Similar documents
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P


さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

Welfare Economics (1920) The main motive of economic study is to help social improvement help social improvement society society improvement help 1885

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

untitled



A


TOP URL 1


³ÎΨÏÀ

熊本県数学問題正解

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

( )


入試の軌跡

i * III () 23. *1

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Untitled

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

( ) ( )

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

°ÌÁê¿ô³ØII


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x)

3/4/8:9 { } { } β β β α β α β β

Part () () Γ Part ,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

n ( (

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a <

mugensho.dvi

inkiso.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

K E N Z OU

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

09 II 09/11/ y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

TOP URL 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

鉄筋単体の座屈モデル(HP用).doc

1 c Koichi Suga, ISBN

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

, = = 7 6 = 42, =

ランダムウォークの境界条件・偏微分方程式の数値計算

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

数値計算:有限要素法

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

B ver B

Gmech08.dvi

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

Transcription:

1 (utilit) 1.1 x u(x) x i x j u(x i ) u(x j ) u (x) 0, u (x) 0 u (x) x u(x) (Marginal Utilit) 1.2 Cobb-Daglas 2 x 1, x 2 u(x 1, x 2 ) x 1,x 2 u(x 1, x 2 ) s.t. P 1 x 1 + P 2 x 2 (1) (P i :, : ) u(x 1, x 2 ) = ū (x 1, x 2 ) ( : Indifference Curve) x 1 x 2 dx 2 dx 1 (Marginal Rate of Substitution :MRS) MRS du(= 0) = u x 1 dx 1 + u x 2 dx 2 dx 2 dx 1 = u/ x 1 u/ x 2 ( ) P 1 x 1 + P 2 x 2 = 1 2 Cobb-Daglas u(x 1, x 2 ) = x α 1 x 1 α 2 (0 < α 1) P 1 = u/ x 1 = αxα 1 1 x 1 α 2 P 2 u/ x 2 (1 α)x α 1 x α 1 2 = α 1 α x 2 x 1

x 1, x 2 (x 1, x 2) αp 2 x 2 = (1 α)p 1 x 1 P 1 x 1 = α(p 2 x 2 + P 1 x 1 ) = α x 1 = α, x (1 α) 2 = P 1 P 2 1.3 (1) α ln x 1 + (1 α) ln x 2 + λ[ P 1 x 1 P 2 x 2 ](= L) x 1,x 2 *1 λ (FOC) L x 1 = α x 1 λp 1 = 0, L = 1 α λp 2 = 0, x 2 x 2 L λ = P 1x 1 P 2 x 2 = 0 x 1 = α P 1, x 2 = (1 α) P 2, λ = 1 x(p, ) Warlas 1.4 min x 1,x 2 P 1 x 1 + P 2 x 2 s.t. u(x 1, x 2 ) = ū min x 1,x 2 P 1 x 1 + P 2 x 2 + µ[ū u(x 1, x 2 )] h(p, ū) Hicks 1.5 Warlas x 1, x 2 u V (P, ) Cobb-Daglas V (P 1, P 2, ) = α ln α (1 α) + (1 α) ln P 1 P 2 P 1, P 2, V P 1 = α P 1 < 0, V = 1 α < 0, P 2 P 2 V = 1 > 0 Hicks E(P 1, P 2, ū) Warlas Hicks V (P 1, P 2, ) = ū = E(P 1, P 2, ū) V E *1 (x 1, x 2 ) 2

E(P, V (P,)) = V (P, E(P,u)) = u x(p, ) = h(p, V (P,)) h(p, u) = x(p, E(P,u)) ( V ) ( E u ) ( Warlas V Hicks ) ( u Hicks E Warlas ) P 1 h(p 1, P 2, u) = x 1 (P 1, ) h = x 1 + x 1 x 1 = h x 1 P 1 P 1 P 1 P 1 P 1 x 1 (Slutzk Equation) h P 1 x 1 x x 1 P 1 x 1 x 2 ( ) x 1, x 2 ( ) 2 2 2 (A B) (B C) Π Π = p wx (p :, :, w :, x : ) 2.1 f(x) f (x) > 0, f (x) < 0 = w p x + Π p (2) x (2) x f(x) (2) (2) f(x) Π x x f(x) = x a (o<a<1) w p = f (x) = ax a 1 x = ( w ap ) 1 a 1 Π = x a = ( w ap ) a a 1, Π = p wx = w 1 a a ( w ap ) 1 a 1 (p) 3 3 f(x)

3 ( ) 1 * 2 3.1 p c() (c(): ) { FOC p c ((p)) = 0 1 c ((p)) (p) = 0 SOC() c 0 (p) > 0 c () (Marginal Cost:MC) c (Variable Cost:VC) (Fixed Cost:FC) ( c V () F ) p c V () F F p cv () (p) cv () (Average Variable Cost:AVC) p MC AVC 2 c () = cv () c () cv () 2 ( = c V ) () = 0 *3 MC AVC AVC 4 c() = 2 + + 1 MC AVC AVC p = c () p(= c ()) <AVC = 0 (4) *2 ( ) *3 4

3.2 X(p) = i x i (p) = Y (p) = i i (p) n X(p) = n (p(n)) X p p n = (p(n)) + n p p n p n = (p(n)) X (p(n)) n (p(n)) < 0 *4 p <AVC p=avc=c () 0 u() + z p z 1 m,z u() + z s.t. p + z = m u() + m p FOC u () p = 0 p = u () 3.3 p (Consumer Surplus:CS) (Producer Surplus:PS) CS+PS W CS = 0 PS = p u ()d p = u() p 0 c ()d = p c() = Π W = CS + PS = u() c() Π = 0 0 5 CS PS E ( ) (Representive Agent) u() + z c() + z w,z u() + z s.t. c(x) + z = w u() + w c() FOC u () c () = 0 u () = c () = p W () = u () c () = 0 *4 x (p) < 0, (p) > 0 5

4 4.1 t (p t p E )X t (p t :, p E :, X t : ) (6) (Dead Weight) 4.2 6 (p t p E )X t (Import Demand) (Export Suppl) p D m S ex 2 A B A B p p 7 A ( ) B * 5 5 *5 (A PS ) 6

5.1 (Monopolist) p() p() c() FOC d d p c () = p() + p () c () = 0 d d p (Marginal Revenue:MR) ε d/ dp/p *6 FOC ( c () = p() 1 + dp ) ( = p() 1 + 1 ) d p ε p W = u ()d p M + p M c ()d = u( ) c( ) 0 0 W = u () c () = p() c () = p () > 0 W 8 MR = MC ( ) (Time Inconsistans) 5.2 2 (strateg) (profit) *7 Nash u i (s 1, s 2,, s i, ) u i(s 1, s 2,, s i, ) (s 1, s 2,, s i, ) Nash Nash Nash *6 ε *7 ( ) 7

5.2.1 2 (Cournot Competition) p(y ) = p( 1 + 2 ) c 1 ( 1 ), c 2 ( 2 ) i p(y ) i c i ( i ) (i=1,2) { FOC p(y ) + p (Y ) i c i ( i) = 0 SOC 2p (Y ) + p (Y ) i c i ( i) 0 1 2 Π 1 ( 1 ( 2 ), 2 ) FOC Π = 0 d Π = 2 Π 1 d 1 1 2 1 d 1 + 2 Π d 2 = 0 d 1 = 2 Π/ 1 2 1 2 d 2 2 Π/ 1 2 0 *8 1 = 1( 2 ) 1 = 2 i ( j) 2 = 2( 1 ) 1 = 2 1 = 2 *9 Cournot-Nash n p(y ) = a by, c i ( i ) = c i FOC ( p(y ) + p (Y ) i c = 0 p(y ) 1 + dp dy (Market Share) s i i Y ( p(y ) 1 + dp ) Y dy p s i ( = p(y ) 1 + s i ε ) i = c p(y ) ) = c MC c s i = 1 n p(y ) ( 1 + 1 nε) = c n c(=mc) 5.2.2 (Bertrand Competition) ( ) ( ) ( c i ( i ) = c i ) 0 c 1 = a 1 b 1 p 1 + cp 2, 2 = a 2 b 2 p 2 + cp 1 (a 1, b 1, c > 0) * 10 c i ( i ) = 0 1 p 1 (a 1 b 1 p 1 + cp 1 )p 1 FOC a 1 2b 1 p 1 + cp 2 = 0 p 1 = a 1 + cp 2 2b 1 () *8 Π () < 0, 2 Π = p 1 (Y ) + p (Y ) 1 0 2 *9 Nash *10 c 8

( p 2 2a1 b 2 + a 2 c 4b 1 b 2 c 2, 2a ) 2b 1 + a 1 c 4b 1 b 2 c 2 0(= c) 5.2.3 (Stackelberg Competition) 1st stage 1 1 2nd stage 2 2 stage game 1 2 stage (Backward Induction) 2 p(y ) = a by, c i ( i ) = c i 1 2 p(y ) 2 c 2 ( 2 ) FOC a b 1 2b 2 c = 0 2 = a c b 1 2b 1 ( ( a b 1 + a c b 1 2b )) 1 c 1 FOC 1 2 (a c 2b 1) = 0 1 = a c 2b, 2 = a c 4b (a c)2 (a c)2 Π 1 =, Π 2 = stage game 8b 16b 1st stage s advantage = a c (a c)2, Π = 3b 9b 5.2.4 (Collusion) Π Π 1 + Π 2 Π = p( 1 + 2 ) ( 1 + 2 ) c 1 ( 1 ) c 2 ( 2 ) FOC Π = 0 Π = 0 1, 2 1 2 p( 1 + 2 ) + p ( 1 + 2 ) ( 1 + 2 ) c 1( 1 ) = 0 p( 1 + 2 ) + p ( 1 + 2 ) ( 1 + 2 ) c 2( 2 ) = 0 c 1 = c 2 1, 2 1 Π 1 = p( 1 + 2 ) 1 c 1 ( 1 ) Π 1 1 = p( 1 + 2 ) + p ( 1 + 2 ) 1 c 1( 1 ) = p ( 1 + 2 ) 2 > 0 1 2 ( ) p = a b( 1 + 2 ), Π i = p i c i, Π = Π 1 + Π 2 ( 1 = 2 = a c 3b, Π 1 = Π 2 = (a c)2 9b ) Π FOC Π = Π = a c 2b( 1 + 2 ) = 0 1, 2 1 2 MC c ( 1 = 2) a c 4b 1 = 0 1(= 2) = a c 4b, Π (a c)2 1(= Π 2 ) = 8b 9

1 1 p 1 c 1 s.t. 2 = a c 4b FOC 3(a c) 4 2b 1 = 0 1 = 3(a c) 9(a c)2, Π 1 = 8b 64b (Trigger Strateg) n n n 1 Π c Π a r 1 1 + r δ δ(< 1) (Discount Factor) Π c Π a : Π c = : Π a = t=0 t (a c)2 δ 8b 9(a c)2 64b + t=1 = 1 (a c) 2 1 δ 8b t (a c)2 δ 9b = 9(a c)2 64b Π c Π a > 1 δ > 9 17 + δ (a c) 2 = (a c)2 (81 17δ) 1 δ 9b 576b(1 δ) * 11 6 (General Equibrium) 6.1 ( 1,2) (x, ) i x, x i, i X, Y X = x 1 + x 2, Y = 1 + 2 *11 δ 10

X Y 1 2 Edgewarth Box 6.2 Edgewarth Box 9 9 Edgewarth Box A 2 1 (Pareto Efficient) * 12 Edgewarth Box (Contract Curve) x( ) ( x) x 10 (u 1 = u 2 = x α 1 α ) 6.3 Warlas Warlas X p n n x i = w i (x i :,w i : ) x x px > px i=1 i=1 (X, p) Warlas (X, p) Warlas X Warlas *12 11

: 1 I. 1. A) B) C) D)A B 2. A) B) C) D)A B E)B C 3. A) B) C) D) E)B C 4. Left Right Top 3,5 5,10 Bottom 1,30 2,100 A){Top,Left} B){Top,Right} C){Bottom,Left} D){Bottom,Right} II. 1 2 1 2 1, 2 () c 1 ( 1 ) = 2 1, c 2 ( 2 ) = 2 p(y ) = a by Y = 1 + 2 1. 1 2. 1 2 3. 2 I. q 3 A,B,C A B C q p(q) = 100 Q, Q = q A + q B + q C MC A = 20, MC B = 7, MC C = 7 12

1. A B C 2. (1) A B C 3. 4. A B C II. P (Q) = 100 Q Q C(Q) = 40Q 1. 2. 3. ( ) 4. 5. (1) I. 1. A() 2. D(A B ) 3. E(B C ) 4. 3 > 1 5 > 2 Top 10 > 5, 100 > 30 Right {Top,Right} II. 1. 1 (a b( 1 + 2 )) 1 2 1 2. 1 FOC Π 1 1 = a 2b 1 b 2 2 = 0 2 (a b( 1 + 2 )) 2 2 FOC 2 Π 2 2 = a b 1 2b 2 1 = 0 1 = a 3 3b, 2 = a 3b 3. p(y ) = a by = a ( 1 + 2 ) p(y ) = a + 3 3 (2) I. 1.A: p(q) q A MC A q A B: p(q) q B MC B q B C: p(q) q C MC C q C q A q B q B 2. B C MC B FOC 100 q A 2q B q B 7 = 0 q B(= q C) = 31 q A 3 Q = 62 + q A 3 A FOC 3.p(Q) = 100 (q A + q B + q c ) = 29 100 62 2q A 3 20 = 0 q A = 27, q B = q C = 22 4. A 29 27 20 27 = 243 B C 484 13

B C II. 1. Q 2.FOC 100 2Q 40 = 0 Q = 30 3.(100 30) 30 40 30 = 900 4. 100-30=70 1 30 30 = 450 2 5. 40 ( ) ( ) : 14