untitled

Similar documents
IV (2)

2012年度HPCサマーセミナー_多田野.pptx

橡固有値セミナー2_棚橋改.PDF

numb.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr

Krylov A04 October 8, 2010 T. Sakurai (Univ. Tsukuba) Krylov October 8, / 48


ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

プログラム


1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

直交座標系の回転

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a

linearal1.dvi

koji07-01.dvi

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-HPC-144 No /5/ CRS 2 CRS Performance evaluation of exclusive version of preconditioned ite

( ) 5 Reduction ( ) A M n (C) Av = λv (v 0) (11.1) λ C A (eigenvalue) v C n A λ (eigenvector) M n (R) A λ(a) A M n (R) n A λ

tnbp59-21_Web:P2/ky132379509610002944

I II III IV V

A

DVIOUT-HYOU

I , : ~/math/functional-analysis/functional-analysis-1.tex

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

Part () () Γ Part ,

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

( )


O E ( ) A a A A(a) O ( ) (1) O O () 467

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

高校生の就職への数学II

橡魅力ある数学教材を考えよう.PDF

Erased_PDF.pdf

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


熊本県数学問題正解

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

日本内科学会雑誌第102巻第4号


1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

untitled

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

Note.tex 2008/09/19( )

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

untitled

main.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

?

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

プリント

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

nsg02-13/ky045059301600033210

mobius1

Tricorn

nakata/nakata.html p.1/20

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

GJG160842_O.QXD

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

本文/目次(裏白)

第8章 位相最適化問題

福岡大学人文論叢47-3


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

n ( (

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

untitled


zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

- 2 -


Transcription:

1 1 Ax = b A R m m A b R m x R m A shift-and invert Lanczos -

LU CG

A = LU LU Ly = b Ux = y A LU A A = LL T 1 LU b,, Vol. 11, No. 4, pp. 14 18 (2006).

x * x (0), x (1), x (2), A Ap A #

x (n+1) = Cx (n) + d C d x * C d A = M N M C = M 1 N d = M 1 b 1 C - SOR ADI x (n) x (n+1) x (n)

A R m m A T A m 0 σ 1 (A) σ 2 (A) σ m (A) A A σ m (A) > 0 A R m m κ(a) = σ 1 (A)/σ m (A) A 1 1 2 # r (n) = Ax (n) b x (n) #

A R m m b R m R m K n (A; b) A b n K n (A; b) = span{b, Ab, A 2 b,, A n 1 b} x (0) = 0 x (n) K n (A; b) n 1 {x (n) } # 0 K 1 (A; b) K 2 (A; b) K n (A; b) K n (A; b) x (n)

K n (A; b) K n+1 (A; b) K n (A; b) = K n+1 (A; b) A K n (A; b) = K n+1 (A; b) n Ax = b x * K n (A; b) A n b = c 0 b + c 1 Ab + + c n 1 A n 1 b c 1, c 2,, c n 1 c 0 = 0 A n c 0 0 c 0 A((1/c 0 )A n 1 b (c n 1 /c 0 )A n 2 b (c 1 /c 0 )b) = b x * K n (A; b)

K n (A; b) x (n) =d 0 b + d 1 Ab + + d n 1 A n 1 b r (n) = Ax (n) b r (n) = b + d 0 Ab + d 1 A 2 b + + d n 1 A n b = ϕ n (A)b ϕ n (z) = 1+d 0 z + d 1 z 2 + + d n 1 z n 1 n K n (A; b) x (n) 1 1

x (n) K n (A; b) b q 1 = b / b 2 v 2 = Aq 1 v 2 q 1 q 2 v 3 = Aq 2 v 3 q 1, q 2 q 3 {v n } Arnordi

Arnoldi Arnoldi Arnoldi compact-wy, 2010, pp. 39-40 (2010).

Arnoldi Arnoldi Aq i q 1, q 2,, q i+1 Aq i = h 1i q 1 + h 2i q 2 + + h i+1,i q i+1 m n (n+1) n AQ n = Q n+1 H n A n Arnoldi

Arnoldi Arnoldi AQ n = Q n+1 H n Q nt Q n n n A span{q 1, q 2,, q n } = K n (A; b) # Arnoldi

A Lanczos Q nt AQ n = H n H n 3 T n Anoldi h ji i j+1 0 Aq i q i q i 1 Arnoldi Lanczos

A Lanczos α n = h nn, β n = h n+1,n = h n,n+1 Lanczos q n q n 1 q n+1 3 1 n

x (n) K n (A; b) Ritz-Galerkin Petrov-Galerkin 3

I r (n) = Ax (n) b x (n) K n (A; b) # e (n) = x (n) x * GMRES MINRES

II Ritz-Galerkin r (n) = Ax (n) b K n (A; b) x (n) Ax (n) b K n (A; b) K n (A; b) 0 K 1 (A; b) K 2 (A; b) K n (A; b) r (0) = b, r (1), r (2),, r (n 1) K n (A; b) # r (n 1) K n (A; b) n

II Ritz-Galerkin A φ (x) = (1/2) x T Ax x T b Ax = b φ (x) x (n) K n (A; b) x (n) = Q n y (n) y (n) R n φ (x (n) ) = (1/2) (Q n y (n) ) T AQ n y (n) (Q n y (n) ) T b y (n) Q nt (AQ n y (n) b) = 0 Ax (n) b K n (A; b) Ritz-Galerkin φ (x (n) ) x (n)

II Ritz-Galerkin A e (n) = x (n) x * A Ritz-Galerkin A x (n) Ritz-Galerkin CG FOM # Ritz-Galerkin

III Petrov-Galerkin R m L 1 L 2 L 3 L n n r (n) = Ax (n) b L n x (n) Ax (n) b L n L n 0 L n b * A T b * K n (A T ; b * ) Petrov-Galerkin Bi-CG QMR # Petrov-Galerkin Petrov-Galerkin CGS Bi-CGSTAB GPBi-CG

1 n P n n ϕ n (z) Ritz-Galerkin A x (n) e (n) = x (n) x * Ae (n) = Ax (n) b = r (n) min ϕ n P n ϕ n (A)b 2 e (n)t Ae (n) = r (n)t A 1 r (n) = b T ϕ n (A)A 1 ϕ n (A)b = b T A 1 ϕ n (A)Aϕ n (A)A 1 b = e (0)T ϕ n (A)Aϕ n (A)e (0) = ϕ n (A)e (0) A Ritz-Galerkin min ϕ P ϕ n (A)e (0) n n A

GMRES Generalized Minimum Residual MINRES Minimum Residual Ritz-Galerkin CG Conjugate Gradient FOM Full Orthogonalizaion Method Petrov-Galerkin Bi-CG Bi-Conjugate Gradient QMR Quasi Minimal Residual CGS Conjugate Gradient Squared Bi-CGSTAB Stabilized Bi-CG

GMRES K n (A; b) r (n) = Ax (n) b x (n) x (n) K n (A; b) x (n) = Q n y (n) y (n) R n 2 Arnoldi AQ n = Q n+1 H n 3 q 1 = b / b 2 4 Q n+1 Q n+1 2 2 n+1 y (n) n y (n) 2

GMRES 2 2 min H n y (n) b 2 e 1 2 H n H n = U n R n U n R (n+1) n, R n R n n QR 1 R n y (n) = U nt b 2 e 1 H n (n+1) n O(n 2 ) H n 1 H n O(n) # n

GMRES Arnoldi K n (A; b) H n QR H n QR U n T b 2 e 1 R n y (n) = U n T b 2 e 1 x (n) = Q n y (n)

GMRES GMRES n # 1 n # q n q 1, q 1,, q n 1 # MINRES H n 3 1 n x (n) (κ(a)) 2 * * H. A. van der Vorst Iterative Krylov Methods for Large Linear Systems, Cambridge Univ. Press, 2003.

CG A r (n) = Ax (n) b K n (A; b) x (n) x (n) K n (A; b) x (n) = Q n y (n) y (n) R n Q n T (Ax (n) b) = Q n T (AQ n y (n) b) = T n y (n) Q n T b = T n y (n) e 1 = 0. Lanczos 3 T n Q n = [q 1 q 2 q n ] T n = L n U n LU x (n) y (n) = U n 1 L n 1 e 1, x (n) = Q n y (n) q 1, q 2,, q n # n

CG x (n) x (n) = Q n y (n) = (Q n U n 1 )(L n 1 e 1 ) [p 0 p 1 p n 1 ][v 0, v 1,, v n 1 ] T p n v n v n 1 = φ n 2 v n 2 / δ n 1

CG p n 1 = q n ε n 2 p n 2 2 x (n) x (n) = [p 0 p 1 p n 1 ][v 0, v 1,, v n 1 ] T = x (n 1) + v n 1 p n 1 CG

CG x n φ (x) = (1/2) x T Ax x T b p n 1 n p n 1 α n

CG CG K n (A; b) = span{b, Ab, A 2 b,, A n 1 b} = span{x 1, x 2,, x n } = span{r 0, r 1,, r n 1 } = span{p 0, p 1,, p n 1 } r nt r j = 0 (j < n) A- p nt Ap j = 0 (j < n) # p n CG A e n A = x n x * A n 1 n # 3

CG CG A e n A = κ A e n A P n 1 n Λ(A) A φ (λ)

CG CG A m * CG m * # φ (λ) m * 0 m * n = m * 0 # 1 CG Ax = b 1

Bi-CG CG

Bi-CG Breakdown r n s n 0 1 breakdown T n LU 0 breakdown 2 breakdown Bi-CG n 1 n # GMRES # 3 A A T # GMRES 2

Bi-CG CGS Bi-CG r n = (R n (A)) 2 b, s n = b * # s nt r n Bi-CG 2 # 2Bi-CG A A T Bi-CGSTAB S n (z) = (1 ω 0 z)(1 ω 1 z) (1 ω n 1 z) n S n (z) r n = S n (A)R(A)b, s n = b * # Bi-CG ω n CGS

Bi-CG GPBi-CG Bi-CGSTAB S n (z) Bi-CGSTAB QMR Bi-CG Bi-CG # Bi-CG #

K A K 1 Ax = K 1 b K 1 A A Ap K 1 Ap AK 1 y = b x = K 1 y K 1 1 AK 2 1 y = K 1 1 b x = K 2 1 y K K 1 A K K 1 x

LU A LU A LU K = LU ILU(0) # ILU(1) ILU(1) IC(0) # K 1 x L 1 x U 1 y # LU ILUT U 1 ILUC

SPAI; SParse Approximate Inverse A A 1 M M min M I AM F LU ILU D 1, D 2 A D 1 1 AD 1 2 LU

Ax = b GMRES CG Bi-CG Lis PETSc

L. N. Trefethen and D. Bau III: Numerical Linear Algebra, SIAM, Philadelphia, 1997. H. A. van der Vorst: Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, 2003. Y. Saad: Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996. R. Barrett et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994., :,, 1996., :,, 2009.