1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Similar documents
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

°ÌÁê¿ô³ØII

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


ver Web

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

D 24 D D D

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Morse ( ) 2014

2000年度『数学展望 I』講義録

数学Ⅱ演習(足助・09夏)


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

all.dvi

meiji_resume_1.PDF

Ł\”ƒ-2005

TOP URL 1

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

基礎数学I


第90回日本感染症学会学術講演会抄録(I)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


日本内科学会雑誌第102巻第4号

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Dynkin Serre Weyl

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

TOP URL 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

プリント

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

III,..

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

untitled

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム



Z: Q: R: C:

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

量子力学 問題

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


2 2 L 5 2. L L L L k.....

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

LLG-R8.Nisus.pdf


A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

プログラム

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

Z: Q: R: C: sin 6 5 ζ a, b

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

本文/目次(裏白)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

January 27, 2015

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

all.dvi


Chap9.dvi

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

Transcription:

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R} P = (p 1,, p n ) Q = (q 1,, q n ) P Q P Q = {(tp 1 + (1 t)q 1,, tp n + (1 t)q n ) ; 0 t 1} v 0, v 1,, v k 1

λ 0 v 0 + λ 1 v 1 + + λ k v k = 0 (λ i R) 1 1 5 6 = λ 0 = λ 1 = = λ k = 0 (6, 2, 3), (0, 5, 3), (0, 0, 7) (1, 2, 3), (1, 3, 5), (4, 3, 2) P 0, P 1,, P k R n P 0 P 1, P 0 P 2,, P 0 P k P 0, P 1,, P k R n P 0, P 1,, P k R n S(P 0,, P k ) S(P 0,, P k ) = {λ 0 OP0 +λ 1 OP1 + +λ k OPk ; λ 0 +λ 1 + +λ k = 1, λ 0,, λ k R} 3. ( ) 7 8 2 2 9 3 3 10 11 12 13 R n k + 1 P 0,, P k ; P 0 P 1 P k = {λ 0OP0 + λ 1OP1 + + λ kopk ; λ 0 + λ 1 + + λ k = 1, λ 0 0, λ 1 0,, λ k 0} P 0 P 1 P k k k ) k P 0 P 1 P k (dim P 0 P 1 P k ) R 2 P 0 = (1, 0), P 1 = (0, 1) P 0 P 1 R 3 P 0 = (1, 0, 0), P 1 = (0, 1, 0), P 2 = (0, 0, 1) P 0 P 1 P 2 s : 0 s k k P 0 P 1 P k s P 0, P 1,, P k s + 1 3 P 0 P 1 P 2 P 3 3 P 0 P 1 P 2 P 3 s τ k σ σ τ k σ σ σ > τ σ σ σ τ<σ τ σ Int σ = σ σ.. 0 σ σ =, Int σ = σ. 4. σ 1, σ 2,, σ k : 14 K = {σ 1,, σ k } K (1) (2) (1) σ K τ σ τ σ (σ K, τ σ = τ K) (2) σ τ K σ τ σ τ 2

4 4 (σ, τ K, σ τ = σ τ σ, σ τ τ). K = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 0 P 2, P 2 P 3, P 0, P 1, P 2, P 3 } P 0, P 1, P 2, P 3, P 4 K = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 0 P 2, P 0, P 1, P 2, P 0 P 3 P 4, P 0 P 3, P 3 P 4, P 0 P 4, P 3, P 4 } P 0 P 1 P 3 P 4 P 2 15 K (dim K) K 16 K = {σ 1, σ 2,, σ k } K K K = σ 1 σ 1 σ k 17 K dim K K dim K 5. 18 5 5 X : X K f : K X 6. 19 σ = P 0 P 1 P k : k (P 0,, P i,, P j,, P k ) (P 0,, P j,, P i,, P k ) 3

20 ( ) 6 (P 0, P 1, P 2 ) (P 2, P 0, P 1 ) 6 (P 0, P 1, P 2, P 3 ) (P 3, P 2, P 1, P 0 ). 21 (P i0, P i1,, P ik ) P i0, P i1,, P ik. P 0, P 1, P 2 = P 1, P 2, P 0 22 P 0, P 1, P 2,, P k, P 1, P 0, P 2,, P k P 0 P 1 P 2 P k 23 P i0, P i1,, P ik = P j0, P j1,, P jk 24 P i0, P i1,, P ik = P j0, P j1,, P jk P i0, P i1,, P ik = P j0, P j1,, P jk. 0 1 P 0, P 1 P 0, P 1 P 0 P 1 P 1, P 0 P 1 P 0 2 P 0, P 1 P 1 P 0, P 1, P 2 P 0 P 1 P 2 P 0 P 1 P 2 P 0, P 2, P 1 P 0 P 1 P 2 P 0 P 2 P 1 25 k P 0 P 1 P k P 0 P i P k 4

7 7 P 0 P 1 P k P 0 P i P k ( 1) i P 0 P i P k ( 1) P 0 P i P k P 0 P i P k P 0 P 1 1 P 0 P 1 0 P 0 P 1 P 2 2 P 0 P 1 P 2 1 7. 7.1 k-chain C k (K) K : m K = {σ1, 0, σi 0 0, σ1, 1, σi 1 1,, σ1 m,, σi m m } (σ j i j i ) 26 C k (K) = {n 1 σ1 k + n 2 σ2 k + + n k σi k k ; n i Z} ( ) 27 8 (n 1 σ1 k + n 2 σ2 k + + n ik σi k k ) +(n 1 σ1 k + n 2 σ2 k + + n i k σi k k ) = (n 1 + n 1) σ1 k + (n 2 + n 2) σ2 k + + (n ik + n i k ) σi k k ( 2 σ 2 1 2 σ2 ) 2 + ( σ1 2 + σ2 ) 2 5

7.2 28 P 0 P 1 P k = k j=0 ( 1)j P 0 P 1 P j P k 8 P 0 P 1 P 2 = P 1 P 2 P 0 P 2 + P 0 P 1 9 P 0 P 1 29 m K = {σ 0 1,, σ 0 i 0, σ 1 1,, σ 1 i 1,, σ m 1,, σ m i m }. 30 9 10 1 : C k (K) C k 1 (K) (0 k m) (n 1 σ k 1 + n 2 σ k 2 + + n ik σ k i k ) = n 1 σ k 1 + n 2 σ k 2 + + n ik σ k i k k > dim K C k (K) = 0 k < 0 C k (K) = 0 C k+1 (K) = 0 C k (K) C 1 (K) C 0 (K) C 1 (K) = 0 (2 P 0 P 1 + 3 P 1 P 2 ) ( P 0 P 1 P 2 ) : C k+1 (K) C k 1 (K) ( c C k+1 (K), (c) = 0) 31 7.3 k cycle Z k (K) Z k (K) = {c C k (K) ; (c) = 0} (= Ker ) 32 k cocycle B k (K) B k (K) = (C k+1 (K)) = { c C k (K) ; c C k+1 (K)} 1 B k (K) Z k (K) 2 B k (K) Z k (K). Z k (K)/B k (K) 33 k H k (K) H k (K) = Z k (K)/B k (K) (B k (K) α α = 0 Z k (K) ) 10 K = { P 0 P 1, P 0, P 1 } H 0 (K), H 1 (K) P 0 P 1 Fig. 1 6

C 0 (K) = {n 1 P 0 + n 2 P 1 ; n 1, n 2 Z} C 1 (K) = {n P 0 P 1 ; n Z} Z 0 (K) = {c C 0 (K) ; c = 0} = {n 1 P 0 + n 2 P 1 ; (n 1 P 0 + n 2 P 1 ) = 0} = {n 1 P 0 + n 2 P 1 ; n 1, n 2 Z} B 0 (K) = { (d) ; d C 1 (K)} = { (n P 0 P 1 ) ; n P 0 P 1 C 1 (K)} = {n P 1 n P 0 ; n Z} H 0 (K) = Z 0 (K)/B 0 (K) = {n 1 P 0 + n 2 P 1 ; n 1, n 2 Z}/{n P 1 n P 0 ; n Z} P 1 P 0, 2 P 1 2 P 0, 0 P 1 = P 0 = {(n 1 + n 2 ) P 0 ; n 1, n 2 Z} = {n P 0 ; n Z} = Z P 0 = Z Z 1 (K) = {c C 1 (K) ; c = 0} = {n P 0 P 1 ; n P 0 P 1 = 0} = {n P 0 P 1 ; n P 1 n P 0 = 0} = {n P 0 P 1 ; n = 0} = {0} = 0 H 1 (K) = Z 1 (K)/B 1 (K) = {0} = 0 11 K = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 2 P 0, P 2 P 3, P 3 P 0, P 0, P 1, P 2, P 3 } H 2 (K) P 0 P 1 P 3 Fig. 2 11 K H 1 (K) 12 K = { P 0 P 1 P 2, P 0 P 2 P 3, P 0 P 1, P 1 P 2, P 2 P 0, P 2 P 3, P 3 P 0, P 0, P 1, P 2, P 3 } H 1 (K) P 2 7

P 0 P 3 P 1 P 2 Fig. 3 1 K = { P 0 P 1, P 1 P 2, P 2 P 0, P 2 P 3, P 3 P 0, P 0, P 1, P 2, P 3 } H 1 (K) = Z Z ( ) 8. 34 3 K: β j (K) = (H j (K) rank) = (H j (K) Z ) dim K K χ(k) = ( 1) j β j (K) j=0 α j (K) = (K j ) χ(k) = dim K j=0 ( 1) j α j (K) K 2 ( )= ( ) ( ) + ( ) 9. 35. K, L : K 0 = (K ) L 0 = (L ) φ : K 0 L 0 K P 0 P 1 P k {φ(p 0 ), φ(p 1 ),, φ(p k )} L φ : K L φ(p 0 ),, φ(p k ) 12 K = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 2 P 0, P 2 P 3, 8

L = { Q 0 Q 1, Q 1 Q 2, Q 0, Q 1, Q 2 } φ : K 0 L 0 φ(p 0 ) = Q 0, φ(p 1 ) = Q 0, φ(p 2 ) = Q 1, φ(p 3 ) = Q 2 13 K, L ψ : K 0 L 0 ψ(p 0 ) = Q 0, ψ(p 1 ) = Q 1, ψ(p 2 ) = Q 2, ψ(p 3 ) = Q 2 4 K, L, M : φ : K L : ψ : L M : = ψ φ : K M 36 K, L : φ : K L (1) φ : K 0 L 0 (2) φ 1 : L 0 K 0 37 K L φ : K L 10. K, L : φ : K L : P 0,, P k : K 38 φ(p 0 ), φ(p 1 ),, φ(p k ) φ # ( P 0, P 1,, P k ) = φ(p 0 ), φ(p 1 ),, φ(p k ) φ(p 0 ), φ(p 1 ),, φ(p k ) φ # ( P 0, P 1,, P k ) = 0 39 φ # : C k (K) C k (L) φ # (n 1 σ 1 + + n l σ l ) = n 1 φ # ( σ 1 ) + + n l φ # ( σ l ) 14 K = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 2 P 0, P 2 P 3, P 0, P 1, P 2, P 3 } L = { Q 0 Q 1, Q 1 Q 2, Q 0, Q 1, Q 2 } φ : K 0 L 0 φ(p 0 ) = Q 0, φ(p 1 ) = Q 0, φ(p 2 ) = Q 1, φ(p 3 ) = Q 2 φ # ( P 0 P 1 + 2 P 1 P 2 + 3 P 2 P 0 ) 2 φ # = φ # 3 φ : K L : = (1) φ # (Z k (K)) Z k (L) (2) φ # (B k (K)) B k (L) 40 Z k (K) c H k (K) = Z k (K)/B k (K) [c] 41 φ : H k (K) H k (L) 9

φ ([c]) = [φ # (c)] φ 13 K = { P 0 P 1, P 1 P 2, P 2 P 0, P 0, P 1, P 2 }, L = { Q 0 Q 1, Q 0, Q 1 } φ(p 0 ) = Q 0, φ(p 1 ) = Q 0, φ(p 2 ) = Q 1 φ ([ P 0 P 1 + P 1 P 2 + P 2 P 0 ]) 15 K = { P 0 P 1, P 1 P 2, P 2 P 0, P 0, P 1, P 2 } L = { Q 0 Q 1 Q 2, Q 0 Q 1, Q 1 Q 2, Q 2 Q 0, Q 0, Q 1, Q 2 } φ(p 0 ) = Q 0, φ(p 1 ) = Q 1, φ(p 2 ) = Q 2 φ ([ P 0 P 1 + P 1 P 2 + P 2 P 0 ]) 5 (1) id : K K ; = (id) : H k (K) H k (K) (2) φ : K L ; ψ : L M ; = (ψ φ) = ψ φ 10

(3) φ : K L ; = φ : H k (K) H k (L) : 11. X : 42 X K f : K X. 43 X H k (X) (k = 0, 1, 2, ) H k (K) 6 H k (X) 7 X, Y : X = Y = H k (X) = H k (Y ). X : H 0 (X) = Z, H k (X) = 0 (k 1). X : H 0 (X) = Z, H 1 (X) = Z, H k (X) = 0 (k 2). X : H 0 (X) = Z, H 1 (X) = 0, H 2 (X) = Z, H k (X) = 0 (k 3). X : g H 0 (X) = Z, H 1 (X) = Z 2g, H 2 (X) = Z, H k (X) = 0 (k 3) 44 X, Y : f, g : X Y ; f g F : X I Y ; (I = [0, 1] ) (1) F (x, 0) = f(x) (2) F (x, 1) = g(x) 14 X = S 1, Y = R 2 f(θ) = (cos θ, sin θ) (θ ) g(θ) = (0, 0) f g 16 X = [0, 1], Y = [0, 1] 45 f(θ) = 0, g(θ) = θ f g f g 11

8 f g = f = g 46 X, Y : X Y (X Y ) f : X Y ; g : Y X ; g f id (X ), f g id (Y ) 15 X = [0, 1], Y = {0} X Y 17 X = {0}, Y = D 2 X Y 9 X Y = X Y 10 X, Y : X Y = H k (X) = H k (Y ) 16 18 11 12 Z : X Y H k (Z) = H k (X) H k (Y ) (k 1) H k (X) H k (Y ) {(x, y) ; x H k (X), y H k (Y )} X H 0 (X) = Z 12

17 19 12. 13 47 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 13

14 ( ) ( ) + ( ) = 2 13. 2 Brouwer 48 15 D 2 : f : D 2 D 2 ; z D 2 f f(z) = z (Brouwer) f : D 2 D 2 14. 14

49 K: P, Q: K P Q P 0, P 1,, P k (1) P 0 = P, P k = Q (2) P i P i+1 (i = 0, 1,, k 1) K 50 18 K K P, Q P Q K C 1 (K) c = P 0 P 1 + P 1 P 2 c 15

20 K C 1 (K) c = P 0 P 1 + P 1 P 2 + P 2 P 5 c 16 51 17 K H 0 (K) = Z. K K 1,, K m K H q (K) = H q (K 1 ) H q (K m ) (q 0) 16

15. K: K 1, K 2 : K ( K 1, K 2 K ) 21 K 1 = { P 0 P 1 P 2, P 0 P 1, P 1 P 2, P 2 P 0, P 0, P 1, P 2 } K 2 = { P 0 P 2 P 3, P 0 P 2, P 2 P 3, P 3 P 0, P 0, P 2, P 3 } K 1 K 2 K 4 K K 1, K 2 K 1 K 2 q : H q (K 1 K 2 ) H q 1 (K 1 K 2 ) 52. 22 [z] H q (K 1 K 2 ) c 1 C q (K 1 ) c 2 C q (K 2 ) z = c 1 + c 2 q : H q (K 1 K 2 ) H q 1 (K 1 K 2 ) q ([z]) = [ (c 1 )] z = c 1 + c 2 H q 1 (K 1 K 2 ) K = { P 0 P 1, P 1 P 2, P 0 P 2, P 2 P 3, P 0 P 3, P 0, P 1, P 2, P 3 } K 1 = { P 0 P 1, P 1 P 2, P 0 P 2, P 0, P 1, P 2 } K 2 = { P 0 P 2, P 2 P 3, P 0 P 3, P 0, P 2, P 3 } z = P 0 P 1 + P 1 P 2 + P 2 P 3 + P 3 P 0 q ([z]) 53 i : K 1 K 2 K 1 ( i(x) = x) i : K 1 K 2 K 2 ( i (x) = x) j : K 1 K 1 K 2 ( j(x) = x) j : K 2 K 1 K 2 ( j (x) = x) i, i, j, j i : H q (K 1 K 2 ) H q (K 1 ), i : H q (K 1 K 2 ) H q (K 2 ) j : H q (K 1 ) H q (K 1 K 2 ), j : H q (K 2 ) H q (K 1 K 2 ) H q (K 1 ) H q (K 2 ) = {(z, w) ; z H q (K 1 ), w H q (K 2 )} ψ q : H q (K 1 K 2 ) H q (K 1 ) H q (K 2 ) ψ q ([z]) = (i ([z], i ([z])) φ q : H q (K 1 ) H q (K 2 ) H q (K 1 K 2 ) φ q ([z 1 ], [z 2 ]) = j ([z 1 ]) + j ([z 2 ]) 18 17

q+1 H q (K 1 K 2 ) ψ q Hq (K 1 ) H q (K 2 ) q φ q Hq (K 1 K 2 ) H q 1 (K 1 K 2 ) ψ q 1 Hq 1 (K 1 ) H q 1 (K 2 ) q 1 φ q 1 Hq 1 (K 1 K 2 ) H 0 (K 1 K 2 ) ψ 0 H0 (K 1 ) H 0 (K 2 ) 0 φ 0 H0 (K 1 K 2 ) 54 55 0 f : A B Im f f(a) = {f(x) B ; x A} Ker f {x A ; f(x) = 0} A 1, A 2,, A n : f 1 : A 1 A 2, f 2 : A 2 A 3, f n 1 : A n 1 A n Im f i = Ker f i+1 (1) Im q = Ker ψ q 1 (2) Im φ q = Ker q (3) Im ψ q = Ker φ q 16 5 ( ) (1) 0 f A g 0 A = 0. (2) 0 f A g B h 0 A = B ( ) 19 20 18