x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

Similar documents
プログラム

日本内科学会雑誌第102巻第4号

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

第86回日本感染症学会総会学術集会後抄録(I)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)


日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

本文/目次(裏白)

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

73

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

基礎数学I

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


, = = 7 6 = 42, =

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

201711grade1ouyou.pdf

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Ł\”ƒ-2005


第90回日本感染症学会学術講演会抄録(I)

Note.tex 2008/09/19( )

chap9.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Morse ( ) 2014

koji07-01.dvi

I

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6


数学の基礎訓練I


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

: , 2.0, 3.0, 2.0, (%) ( 2.

meiji_resume_1.PDF

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Erased_PDF.pdf

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

量子力学 問題

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

/02/18

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)


s s U s L e A = P A l l + dl dε = dl l l

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q




Part () () Γ Part ,

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.



( ) ( )

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

³ÎΨÏÀ

v er.1/ c /(21)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Z: Q: R: C: 3. Green Cauchy

prime number theorem


chap10.dvi

Transcription:

1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z

2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4 ( ). (, m) = 1 x b (mod m) modm 2.5. Z/Z 0 (mod ) x 1 (mod ) x 2.4 2.6. ( 1 + 2 + + k ) 1 + 2 + k (mod ). 1, 2,..., k n 1 1 n 2 2... n k k (n 1 + n 2 + + n k = )! n 1!n 2!... n k! 0 (mod ) 2.7 ( ). (, ) = 1 1 1 (mod ) 2.8 ( ). 1 1 g (Z/Z) 2 g 3 {1, 2..., 1} = {g, g 2,... g 1 = 1} 3 3.1 x 2 (mod m) x m m 2 Z/Z 0( ) 3 G g G x x = g n (n ) G g

3.2 3.1. ( ) { = 1 ( ) 1 ( ) ( ) = 0 4 3.2. ( ) () = ±1 1 1 ( 1)/2 ( ) (b) g l (mod ) (g ) = ( 1) l (c) ( ) ( ) b = ( ) b (d) Euler ( ) ( 1)/2 (mod ) ( ) ( ). () = 1 2, 2 2,... ( 1) 2 = 1 = 1 1 2, 2 2,... ( 1) 2 mod 1 2 ( 1) 2, 2 2 ( 2) 2,..., ( 1 2 )2 ( + 1 2 )2 (mod ) ( ) 2 b 2 (1 b ( 1)/2) = 1 1 2, 2 2,... ( 1 ( ) 2 )2 ( 1)/2 = 1 ( 1)/2 (b) (c) (b) ( ) 4 F ( 5.1)

(d) (b)(c) (c), q ( ) q 3.3 ( )., q ( ) ( ) ( ) q = ( 1) 1 2 q 1 2 q ( ) 1 = ( 1) 1 2 ( ) 2 = ( 1) 1 8 (2 1) 4 Z[ω] 4.1. () Z[ω] = { + bω, b Z, ω = e 2πi 3 } (b) ξ = + bω ξ = + bω 2 ξ (c) η ξ ζ Z[ω] ξ = ηζ (d) ϵ 1 ϵ Z[ω] ϵ

(e) ξ = + bω N(ξ) = ξξ = ( + bω)( + bω 2 ) = 2 b + b 2 ξ (f) η = ϵξ(ϵ ) η ξ η ξ (g) Z[ω] Z[ω] 5 4.2 ( ). () N(ξη) = N(ξ)N(η) (b) ϵ N(ϵ) = 1 (c) Z[ω] ±1, ±ω, ±ω 2 6 (d) N(ξ) ξ (e) 0 Z[ω] (f) γ, γ 1 0 κ Z[ω] γ = κγ 1 + γ 2 N(γ 2 ) < N(γ 1 ) (g) 6 (h) π π βγ π β π γ (i) Z[ω] Z[ω] (i) 1 ω (ii) q 2 (mod 3) q (iii) N(π) = ππ = ( ) π Z[ω] (iii) 1 (mod 3), q, π mod 3 1 mod3 2 Z[ω] 5 Z 6

(j) π Z[ω]/πZ[ω] N(π) { { + bω 0 < q, 0 b < q} (π = q ) {0, 1,... 1}(ππ = ) modπ (k) π (α, π) = 1 α N(π) 1 1 (mod π) (l) π. () (h) 7 (i) 1 ω 3 ξ q N(ξ) N(q) = q 2 N(ξ) = 2 b+b 2 4 2 4b+b 2 = (2 b) 2 0 1 (mod 3) N(ξ) = q ξ q q 1 (mod 3) 3.3 ( ) ( ) ( ) 3 1 3 ( = = ( 1) 1 2 ( 1) 3) 1 2 3 1 2 ( ( ) 1 = = = 1 3) 3 2 + 3 = ( + 3)( 3) = ( + 1 + 2ω)( 1 2ω) Z ( + 1 + 2ω) ( 1 2ω) Z ± 1 ± 2 ω = πγ(π, γ ) 2 = N(π)N(γ) N(π) = N(γ) = π = N(π) = ππ = ππ 7

(j) Z[ω] modπ S S modπ S modπ (k) t t = N(π 1) t (mod π)(t mod π ) t 0 (mod π) N(π) 1 1 (mod π) (l) Z[ω] Z Z[ω] 5 5.1 ( ). Z/Z F 8 F {0} F C {0} C χ : F C, b F χ(b) = χ()χ(b) χ ε F ε() = 1 χ ε χ(0) = 0 ε ε(0) = 1 F 5.2 ( ). () χ(1) = 1 (b) 0 (χ()) 1 = 1 (c) χ( 1 ) = χ() 1 = χ() 5.3. χ ε F t F χ(t) = 0 8 F finite field

. χ ε χ() 1 F S = χ()s = t F χ(t) = χ() 1 S = 0 t F χ(t) = S( F ) t F χ(t) 5.4 ( ). ˆF = {χ χ F } χλ() = χ()λ() χ 1 () = χ() 1 ˆF ε 5.5. ˆF 1. F g F = gl (l ) χ() = χ(g) l χ χ(g) χ(g) 1 1 1 λ(g) = ζ = e 2πi 1 λ 0 = ε, λ, λ 2,..., λ 2 ˆF ˆF λ 1 5.6. 1 χ() = 0 χ F ˆ. λ 5.5 χ χ() = S λs = χ = χ = χ λ()χ() λχ() χ() = S( ˆF ) λ() 1 S = 0

5.7 ( ). χ ˆF, F g (χ) = t F χ(t)ζ t g 1 (χ) = g(χ) ζ 1 e 2πi 5.8. 0, χ ε g (χ) = χ( 1 )g(χ). g (χ)χ() = χ() t χ(t)ζ t = t = t χ(t)ζ t χ(t)ζ t = g(χ) 5.9. χ ε g(χ) =, g(χ)g(χ) = χ( 1). g (χ)g (χ) F 0 g (χ) = χ()g(χ) g (χ) = χ()g(χ) = χ( 1 )g(χ) g (χ)g (χ) = g(χ)g(χ) = g(χ) 2 = 0 g 0 (χ) = t χ(t) = 0 F g (χ)g (χ) = ( 1) g(χ) 2 g (χ)g (χ) = x χ(x)ζ x y χ(y)ζ y = χ(x)χ(y)ζ x y x,y

g (χ)g (χ) = χ(x)χ(y)ζ x y x,y = χ(x)χ(y) x,y ζ (x y) ζ nt n = 0, n 0 0 t = x=y χ(x)χ(y) = x χ(x)χ(x) = ( 1) (χ(0) = 0 ) g(χ) 2 = χ( 1) = ±1 χ( 1) = χ( 1) g(χ) = t χ(t)ζ t = χ( 1) t χ( t)ζ t = χ( 1)g(χ) g(χ)g(χ) = g(χ)g(χ) = χ( 1) 5.10 ( ). χ, λ ˆF J(χ, λ) = χ()λ(b) +b=1,b F 5.11 ( ). χ, λ ε J(χ, χ 1 ) = χ( 1) χλ ε J(χ, λ) = g(χ)g(λ) g(χλ) J(χ, λ) =

. J(χ, χ 1 ) = +b=1 b 0 χ( b ) = χ( 1 ) 1 1 1 = 1 = 1 = c c 1 F {1} c F { 1} J(χ, χ 1 ) = c 1 χ(c) = c χ(c) χ( 1) = χ( 1) g(χ)g(λ) = ( x χ(x)ζ x )( y λ(y)ζ y ) = χ(x)λ(y)ζ x+y x,y = χ(x)λ(y)ζ t t x+y=t = ζ t χ(x)λ(y) t x+y=t t = 0 χ(x)λ(y) = χ(x)λ( x) x+y=0 x = λ( 1) χλ(x) x = 0 ( χλ ε) t 0 x = tx, y = ty χ(x)λ(y) = χλ(t) χ(x )λ(y ) x+y=t x +y =1 = χλ(t)j(χ, λ) g(χ)g(λ) = t χλ(t)ζ t J(χ, λ) = g(χλ)j(χ, λ)

J(χ, λ) = g(χ)g(λ) g(χλ) g(χ) = J(χ, λ) = 5.12. 1 (mod n), χ ˆF 9 n g(χ) n = χ( 1)J(χ, χ)j(χ, χ 2 )... J(χ, χ n 2 ) 5.13. χ 3 1 (mod 3) g(χ) 3 = J(χ, χ). 5.11 g(χ) 2 = J(χ, χ)g(χ 2 ) g(χ 2 ) = g(χ)( χ 3) g(χ) 2 = J(χ, χ)g(χ) g(χ) 3 = g(χ)g(χ)j(χ, χ) = χ( 1)J(χ, χ)( 5.9) = χ 3 ( 1)J(χ, χ) = J(χ, χ) 6 9 χ l = ε l

6.1 ( ) 2 ( ) t ζ t ( ) t = χ () g = g (χ ) = ( ) t ζ t, g = g 1 t χ () = ±1 χ = χ 5.9 g(χ )g(χ ) = g 2 (χ ) = χ ( 1) = ( 1) 1 2 ( 1) ( 1) 2 = ( ) g q 1 = (g 2 ) (q 1)/2 (mod q) ( 3.2(d)) q ( ) g q g (mod q) q g q = ( ( ) t ζ t ) q q t ( ) q t ζ tq (mod q) ( 2.6) q t q = t ( ) t ζ tq = g q = q ( q 1 ) g ( ) ( ) q 1 g g (mod q) q g g 2 = ( ) ( ) q 1 (mod q) q ( ) ( ) q 1 (mod q) q

±1 q q 3 ( q ) ( ) q = 1 = ( 1) 1 2 ( ) ( ) q = ( 1) 1 2 q 1 2 q 6.2 3 6.1. π N(π) 3 1, ω, ω 2 mod π 6.2. π N(π) 3 π /α Z[ω] α N(π) 1 3 ω m (mod π) m = 0, 1, 2. α N(π) 1 1 = (α N(π) 1 3 1)(α N(π) 1 3 ω)(α N(π) 1 3 ω 2 ) 0 (mod π)( 4.2(k)) 4.2(h) ( 6.3 (3 ). π N(π) 3 α ) α Z[ω] π 3 ( α π ) 3 = { 0 (π α) ω m ( α ) 6.4 ( ). () π 3 (b) ( ) αβ ( α ) = π 3 π 3 (π /α) ω m 6.2 ( α π ) ( ) β π 3 3 = 1 x 3 α (mod π) (c) ( α 1 α ) 3 (N(π) 1) π 3 (mod π)

( α ) (d) α β (mod π) = π 3 ( ) β π 3 (c) Euler 3.2(d) 10( α ) χ π (α) π 3 6.5. χ π (α) = χ π (α) 2 = χ π (α 2 ) χ π (α) = χ π (α). α 1 3 (N(π) 1) χ π (α) (mod π) α 1 3 (N(π) 1) χ π (α) (mod π) N(π) = N(π) χ π (α) = χ π (α) 6.6. q Z[ω] χ q (α) = χ q (α 2 ) (n, q) = 1 n χ q (n) = 1. q = q, n = n 6.5 6.7 (rimry). π Z[ω] π 2 (mod 3) π rimry π π rimry 11 π q π = q rimry ππ = π = + bω( 2, b 0 (mod 3) rimry π 12 10 11 12

1: mod3 0 1 2 ω 1 + ω 2 + ω 2ω 1 + 2ω 2 + 2ω. mod3 13 1 ω π 2ω (mod 3) π 2ω, π ω, ωπ 1+ω, ωπ 2+2ω, ω 2 π 2, ω 2 π 1 (mod 3) π rimry π π rimry 6.3 6.8 ( ). π 1, π 2 rimry N(π 1 ) N(π 2 ) N(π 1 ), N(π 2 ) 3 χ π1 (π 2 ) = χ π2 (π 1 ) 6.9 ( ). π N(π) 3 π = q q = 3m 1 ππ = π rimry = 3m 1 χ π (1 ω) = ω 2m 6.4 6.4.1 π 1 = q 1, π 2 = q 2 6.6 χ π1 (π 2 ) = χ π2 (π 1 ) = 1 13

6.4.2 π 1, π 2 ππ = ππ = Z[ω]/πZ[ω] Z/Z = F χ π F 3 g(χ π ) 3 5.13 J(χ π, χ π ) χ π J(χ π, χ π ) Z[ω] 6.10. J(χ π, χ π ) π π. J(χ π, χ π ) = x 5.11 x 2 = xx = = ππ Z[ω] x π x π 6.11. J(χ π, χ π ) 2 (mod 3). g(χ π ) 3 = ( t χ π (t)ζ t ) 3 t χ π (t) 3 ζ 3t (mod 3) 2.6 = 1 (χ π (0) 3 = 0, t 0 χ π (t) 3 = 1 ) g(χ π ) 3 = J(χ π, χ π ) 1 (mod 3) 6.12. n 0 (mod N(π) 1). t 0 (mod ) n (t) n (mod ) = t n n F n 0 (mod π) t 0 (mod )

6.13. J(χ π, χ π ) = π. 6.10 6.11 π rimry ππ = J(χ π, χ π ) = π π J(χ π, χ π ) = χ π ()χ π (b) +b=1 = χ π ((1 )) ( 2 ) 1 3 ( 1) (mod π) = 2 3 ( 1) n= 1 3 ( 1) k n n (k n ) 0 (mod π) ( 6.12) J(χ π, χ π ) 0 (mod π) π 0 (mod π) J(χ π, χ π ) = π g(χ π ) 3 = π 6.4.3 π 1 π 1 =, π 2 = q. g(χ π ) 3 = π g q2 1 = (π) 1 3 (q2 1) χ q (π) (mod q) g q2 χ q (π)g (mod q) g q2 = ( t χ π (t)ζ t ) q2 ( t t χ π (t) q ζ tq ) q (mod q) ( 2.6) χ π (t)q 2 t tq2 (mod q) q 2 1 (mod 3) = t χ π (t)t tq2 = g q 2 g q 2 = χ π ((q 2 ) 1 )g χ π ((q 2 ) 1 )g χ q (π)g (mod q)

g(χ π ) g(χ π )g(χ π ) = χ π ( 1) χ π ((q 2 ) 1 ) χ q (π) (mod q) 6.6 χ q () = 1, χ π ((q 2 ) 1 ) = χ π (q), 1, ω, ω 2 mod q χ π (q) = χ q (π) 6.4.4 π 1 π 1 = 1, π 2 π 2 = 2. 6.4.3 χ π1 ( 2 2) = χ π2 (π 1 1 ) χ π2 ( 2 1) = χ π1 (π 2 2 ) 14 χ π1 (π 2 )χ π2 (π 1 ) = 1 χ π (α) = χ π (α) χ π1 (π 2 ) = χ π2 (π 1 ) 6.5 π = q ππ ( = α ) τ τ 3 6.6 Z[ω] 14 /π = π

L A TEX s.genki0605@gmil.com [1] G. H. Hrdy, E. M. Wright I, 2001 [2] J. H. Silvermn,2007 [3] T. M. Aostol Introduction to Anlytic Number Theory (Sringer,1976) [4],1992