「国債の金利推定モデルに関する研究会」報告書

Similar documents
II III II 1 III ( ) [2] [3] [1] 1 1:

第86回日本感染症学会総会学術集会後抄録(I)

B

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

tnbp59-21_Web:P2/ky132379509610002944

201711grade1ouyou.pdf

プログラム

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

December 28, 2018

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

構造と連続体の力学基礎

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)



(1) (2) (3) (4) 1


chap9.dvi


gr09.dvi

LLG-R8.Nisus.pdf

2011de.dvi

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

meiji_resume_1.PDF

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

B ver B

TOP URL 1


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0


IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

08-Note2-web

main.dvi

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

Nosé Hoover 1.2 ( 1) (a) (b) 1:

住宅ローン債権担保証券のプライシング手法について:期限前償還リスクを持つ金融商品の価格の算出

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

本邦国債価格データを用いたゼロ・クーポン・イールド・カーブ推定手法の比較分析

Note.tex 2008/09/19( )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =


CVMに基づくNi-Al合金の

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Ł\”ƒ-2005

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

第90回日本感染症学会学術講演会抄録(I)

pdf

財政赤字の経済分析:中長期的視点からの考察

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

日本内科学会雑誌第102巻第4号

03.Œk’ì

untitled


Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

arxiv: v1(astro-ph.co)

30 (11/04 )


量子力学 問題

II 1 II 2012 II Gauss-Bonnet II

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

IMES DISCUSSION PAPER SERIES Discussion Paper No J INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

chap10.dvi

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

現代物理化学 1-1(4)16.ppt

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

untitled


.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

( ) ( )

I ( ) 2019



chap1.dvi

Transcription:

: LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1

L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t) MMC; money market account R t B L t) =e 0 r Ls)ds Q L Ω, F,Q L ) Q L 2 W L t),w G t)) {F t } 2 X P E P X 2.1 L L P L t, T ) P L t, T )=E Q L e R T r t L s)ds F t = E Q BL t) L F t 1) B L T ) P L t, T ) Q T L dq T L dq L Ft = P L t, T ) B L t)p L 0,T) 2) t T 1,T 2 ) 1 PL t, T 1 ) T 2 T 1 P L t, T 2 ) 1 LIBOR LIBOR t T 0,T N St, T 0,T N ) t T 0 <T 1 < <T = T N δ i = T i T i 1 t T i 1,T i LIBOR Lt, T i 1,T i ) P L t, T ) Lt, T i 1,T i )= 1 E QT i 1 L δ i P L T i 1,T i ) 1 Ft 1 L, G LIBOR Government Bond 2 2007) 2

St, T 0,T N ) LIBOR LT i 1,T i 1,T i ) i =1, 2,...,N) P L t, T 0 )+St, T 0,T N ) = P L t, T 0 )+ δ i P L t, T i )+P L t, T N ) δ i Lt, T i 1,T i )P L t, T i )+P L t, T N ) 3) St, T 0,T N )= N δ ilt, T i 1,T i )P L t, T i ) N δ ip L t, T i ) = P Lt, T 0 ) P L t, T N ) N δ ip L t, T i ) 4) δ i Lt, T i 1,T i )P L t, T i ) = = E QT i L 1 P L T i 1,T i ) 1 Ft P L t, T i ) PL t, T i 1 ) P L t, T i ) = P L t, T 0 ) P L t, T N ) ) 1 P L t, T i ) P L t, T ) L 2.2 L L r G t) r L t) r G t) G r G t) MMC B G t) =e R t 0 r Gs)ds 5) λ L t), λ G t) B G t) Q G dq G Ft = ζ G t) dq L { t exp 0 λ L s)dw L s) λ G s)dw G s) 1 λ L s) 2 + λ G s) 2) )} ds 2 6) 3

6) G P G t, T )=E Q BG t) G F t 7) B G T ) 3 G r G t) r L t) h G t) =r G t) r L t) 4 L LIBOR G t T 1,T 2 ) 1 PG t, T 1 ) T 2 T 1 P G t, T 2 ) 1 Govt L Govt t Govt Gt, T i 1,T i ) Gt, T i 1,T i )= 1 E QT i 1 ) L F t 1 8) δ i P G T i 1,T i ) T N CT N ) V t, T N ) Gt, T i 1,T i ) V t, T N ) V t, T N )+CT N ) = P L t, T 0 )+ V t, T N )=P L t, T 0 )+ δ i P L t, T i )+P L t, T N ) δ i Gt, T i 1,T i )P L t, T i )+P L t, T N ) 9) δ i CT N ) Gt, T i 1,T i ))P L t, T i ) 10) N δ igt 0,T i 1,T i )P L T 0,T i ) N δ ip L T 0,T i ) 3 P Gt, T ) L 4 h Gt) 4

9) Govt GT i 1,T i 1,T i ) 9) L G = CT N ) δ i P L t, T i ) = P L t, T 0 ) δ i Gt, T i 1,T i )P L t, T i ) Lt, T i 1,T i ) Gt, T i 1,T i ) Govt LIBOR Gt, T i 1,T i ) <Lt, T i 1,T i ), i =1, 2,...,N V t, T N ) >CT N ) δ i P D t, T i )+P D t, T N ) 11) L 3 LG r L t) Q L Quadratic Gaussian r L t) = yt)+α + βt) 2, dyt) = a L yt)dt + σ L dw L t), y0) = y 0 12) h G t) dh G t) =θt)dt + σ G dw G t), h G 0) = h 0 θt) Nelson-Siegel ft) ft) = β 0 + β 1 exp t ) t + β 2 exp t ) 13) τ 1 τ 1 τ 1 θt) = dft) + σg 2 dt t 14) 5

λ L t) =0, λ G t) =λ G 15) G B G t) Q G dq G Ft = ζ G t) = exp 1 ) dq L 2 λ2 Gt λ G W G t) Quadratic Gaussian L P L t, T ) P L t, T ) = exp A L t, T ) B L t, T )yt) C L t, T )yt) 2) 16) Pelsser 1997) A L t, T ),B L t, T ), C L t, T ) γ = a 2 L +2σ2 L, F L t, T ) = ) 1 2γe γt t) γ + a L )e 2γT t) + γ a L, C L t, T ) ) ) 1 = e 2γT t) 1 γ + a L )e 2γT t) + γ a L, T α + βs B L t, T ) = 2F L t, T ) t F L s, T ) ds = 2B 1 γ 2, A 5 T ) 1 A L t, T ) = t 2 σ2 L B Ls, t) 2 σl 2 C Ls, T ) α + βs) 2 ds ) = σl 2 A4 γ 5 + A 6 α 2 T t) αβt 2 t 2 ) 1 A 5 3 β2 T 3 t 3 ), Γ 1 = γ a L, Γ 2 = γ + a L, A 1a = e γt t) +4 e γt t) 3 + 2γT t)), A 1b = e γt t) 4+e γt t) 3 2γT t)), A 2a = e γt t) 1 γt) 21 γt + T )) + e γt t) 1 γ2t + T )+γ 2 t 2 T 2 )), A 2b = e γt t) 1 + γt) 21 + γt + T )) + e γt t) 1 + γ2t + T )+γ 2 t 2 T 2 )), A 3a = 4γt1 γt) e γt t) 1 γt) 2 + e 1+2γt γt t) γ 2 2t 2 + T 2 )+ 2 ) 3 γ3 t 3 T 3 ), A 3b = 4γt1 + γt)+e γt t) 1 + γt) 2 + e 1+2γt γt t) + γ 2 2t 2 + T 2 )+ 2 ) 3 γ3 t 3 T 3 ), A 4 = α 2 γ 2 Γ 1 A 1a +Γ 2 A 1b )+2αβγΓ 1 A 2a +Γ 2 A 2b )+β 2 Γ 1 A 3a +Γ 2 A 3b ), A 5 = Γ 1 e γt t) +Γ 2 e γt t), A 6 = 1 2 T t) Γ 1 1 Γ 1 ) 1 2 + Γ 1 1 +Γ 1 ) 2 ln A5 ln2γ)), 2γ B 1 = αγ e γt e γt) Γ 1 e γt +Γ 2 e γt) ) + β Γ 1 e γt t) 1 γt)+γ 2 e γt t) 1 + γt) Γ 1 1 γt) Γ 2 1 + γt) 6

G P G t, T ) P G t, T ) = E Q BG t) G F t B G T ) = E Q BG t) ζ L G T ) F t B G T ) ζ G t) = E Q L Bt) ζ G T ) R T BT ) ζ G t) e h t G s)ds F t = E Q BL t) L F t E Q ζg T ) R T L B L T ) ζ G t) e t h G s)ds F t = P L t, T )E Q G e R T t h G s)ds F t 17) 2 5 4 ζ G t),h G t) r L t) 17) H G t, T )=P G t, T )/P L t, T ) H G t, T )=E Q G e R T t h G s)ds F t 18) h G t) H G t, T ) G Q G Q G ht) dh G t) =θt) σ G λ G )dt + σ G dw G G t) WG Gt) =W Gt)+λ G t Q G H G t, T ) 5 H G t, T ) = exp {A G t, T )+B G t, T )h G t)} 19) B G t, T ) = T t), A G t, T ) = = T t T t θs) σ G λ G )T s)ds + σ2 G 2 T fs)ds +T t)ft) σ2 G T t)2 2 t T s) 2 ds t λ ) G σ G 5 Hull White 1990) 7

Govt δ i Gt, T 1,T 2 ) = E QT 2 1 L F t 1 P G T 1,T 2 ) = E QT 2 PL T L 1,T 1 ) P L T 1,T 2 ) e A GT 1,T 2 ) B G T 1,T 2 )h G T 1 ) F t 1 = P Lt, T 1 ) T 1 P L t, T 2 ) EQ L e A GT 1,T 2 ) B G T 1,T 2 )h G T 1 ) F t 1 = P Lt, T 1 ) P L t, T 2 ) EQ L e A GT 1,T 2 ) B G T 1,T 2 )h G T 1 ) F t 1 = P Lt, T 1 ) { P L t, T 2 ) exp A G T 1,T 2 ) B G T 1,T 2 )E Q L h G T 1 ) F t + 1 } 2 B GT 1,T 2 ) 2 Var Q L h G T 1 ) F t 1 3 T 2 T 1 4 h G t) W L t) 5 h G T 1 ) F t h G t) T1 E Q L h G T 1 ) F t = h G t)+ θs)ds t Var Q L h G T 1 ) F t = σg 2 T 1 t) Govt Gt, T 1,T 2 ) = 1 ) PL t, T 1 ) δ i P L t, T 2 ) K Gt, T 1,T 2 ) 1 20) K G t, T 1,T 2 ) { = exp A G T 1,T 2 ) B G T 1,T 2 ) { T 2 = exp fs)ds +T 2 T 1 )h G t) ft)) T 1 + σ GT 2 T 1 ) 2 T1 ) h G t)+ θs)ds + σ2 G T 2 T 1 ) 2 } T 1 t) t 2 } T 2 T 1 )σ G T 1 λ G )+σ G T 1 t)t 2 + t)) P L t, T 1 )/P L t, T 2 ) LIBOR K G t, T 1,T 2 ) LIBOR Govt K G t, T 1,T 2 ) < 1 Govt LIBOR 21) 8

V t, T N ) = P L t, T 0 )+ = P L t, T 0 )+ = δ i CT N ) Gt, T i 1,T i ))P L t, T i ) 1 + δ i CT N ))P L t, T i ) K G t, T i 1,T i )P L t, T i 1 )) δ i CT N )P L t, T i )+P L t, T N )+ 1 K G t, T i 1,T i )) P L t, T i 1 ) 22) 3 N 1 K Gt, T i 1,T i )) P L t, T i 1 ) L 2 ZV t, T N ) ZV t, T N ) = P L t, T N )+ 1 K G t, T i 1,T i )) P L t, T i 1 ) 23) 4 30 LG 3 L r L t) a L, σ L, y 0, α, β G h G t) σ G, h 0, λ G, β 0, β 1, β 2, τ 1 r L t) LIBOR 1. min n S model T i ) S obs T i )) 2 S model T i )=S0,T 0,T i )= P L0,T 0 ) P L 0,T i ) i k=1 δ kp L 0,T k ) S obs T i )= T i LIBOR 9

2. LIBOR:1m,3m,6m LIBOR: 1-10yr,15,20,25,30yr Source : British Bankers Association, Bloomberg) 3. Nelder-Mead 6 Excel OPTMIZ v2.0 7 1 900 1: r L t) a L 0.05 0.80 σ L 0.00 1.00 y 0-1.00 1.00 α -1.00 1.00 β -0.50 0.50 h G t) r L t) 1. 8 min n Z model T i ) Z obs T i ) Z model T i )= ln P L 0,T i )+ i / 1 K G 0,T k 1,T k )) P L 0,T k 1 )) T i T 0 ) k=1 Z obs T i )= ln V obs T i ) CT i ) i / δ k P L 0,T k )) T i T 0 ) k=1 V obs T i ) = JGB T i CT i ) 2. 2 5 10 20 30 1 Source : ) 3. Nelder-Mead Excel OPTMIZ v2.0 2 300 3 6 Nelder-Mead Nelder and Mead 1965) 7 http://digilander.liberto.it/foxes/index.htm Xnumbers5.4 8 robust 10

2: h G t) σ G 0.0000 0.0030 h 0-0.0050 0.0010 λ G -10.00 10.00 β 0-0.0020 0.0020 β 1-0.0020 0.0020 β 2-0.0100 0.0100 τ 1 0.001 30.0 3: JX26-7 JX26 JX25 JX24 JX23 2007/7/17 2007/4/16 2007/1/17 2006/10/16 2006/7/12 a L 0.191 0.101 0.101 0.107 0.227 σ L 0.106 0.082 0.056 0.087 0.108 y 0-0.141-0.180-0.083-0.157-0.154 α 0.058 0.102 0.154 0.095 0.099 β 0.002 0.000 0.001 0.001 0.001 σ G 0.0015 0.0015 0.0012 0.0017 0.0009 h 0-0.0020-0.0027-0.0043-0.0007-0.0012 λ G -0.501-2.944-9.998 0.346-3.709 β 0-0.0007-0.0010-0.0017-0.0003 0.0003 β 1-0.0001 0.0002-0.0009-0.0004 0.0001 β 2-0.0023-0.0003-0.0032-0.0047-0.0058 τ 1 19.7 22.2 16.1 13.3 7.3 JX22 JX21 JX20 JX19 JX18 2006/4/17 2006/1/18 2005/10/17 2005/7/13 2005/4/13 a L 0.502 0.282 0.304 0.176 0.198 σ L 0.096 0.001 0.007 0.035 0.036 y 0-0.160-0.149-0.147-0.235-0.226 α 0.142 0.168 0.166 0.210 0.201 β 0.001 0.000 0.001-0.001-0.001 σ G 0.0017 0.0030 0.0026 0.0022 0.0029 h 0-0.0021-0.0013-0.0040-0.0022-0.0032 λ G -3.320-2.040-5.474-3.374-4.536 β 0 0.0000-0.0005 0.0002-0.0001-0.0002 β 1-0.0006 0.0011-0.0001-0.0006-0.0005 β 2-0.0091-0.0049-0.0020-0.0024-0.0057 τ 1 10.8 8.5 9.4 7.5 9.1 11

JX17 JX16 JX15 JX14 2005/2/14 2004/10/18 2004/8/16 2004/4/14 a L 0.190 0.268 0.266 0.285 σ L 0.000 0.031 0.038 0.039 y 0-0.204-0.207-0.210-0.199 α 0.214 0.179 0.186 0.175 β -0.002 0.000-0.001 0.000 σ G 0.0026 0.0017 0.0030 0.0030 h 0-0.0035-0.0003-0.0030-0.0022 λ G -5.695-0.296-4.360-2.706 β 0-0.0001-0.0018 0.0008 0.0014 β 1-0.0020-0.0020-0.0002-0.0017 β 2-0.0086-0.0060-0.0058-0.0066 τ 1 11.3 12.9 6.5 6.8 26 7 26 4 22 14 1 6 26 7 1 30 2 JGB 3 26 4 4 22 5 22 V h G t) Nelson- Siegel 6 14 10 10 20 20 30 30 30 40 4 21 26 7 20 30 14 20 5 2 2 Quadratic Gaussian 12

4: 30 40 %) 30 %) 40 %) bp) JX26-7 2007/7 2.590 2.549 2.714 16.5 JX26 2007/4 2.354 2.383 2.509 12.6 JX25 2007/1 2.380 2.369 2.512 14.3 JX24 2006/10 2.515 2.513 2.656 14.3 JX23 2006/7 2.560 2.576 2.699 12.3 JX22 2006/4 2.590 2.595 2.776 18.1 JX21 2006/1 2.330 2.336 2.547 21.1 JX20 2005/10 2.515 2.491 2.701 21.0 JX19 2005/7 2.355 2.309 2.414 10.5 JX18 2005/4 2.345 2.328 2.466 13.8 JX17 2005/2 2.460 2.371 2.475 10.4 JX16 2004/10 2.500 2.430 2.590 16.0 JX15 2004/8 2.560 2.509 2.664 15.5 JX14 2004/4 2.480 2.463 2.648 18.5 Hull-White Quadratic Gaussian Vasicek CIR 1 Nelson-Siegel 2004 20 30 1, 2007),,. 2 Hull, J., and A. White. 1990). Pricing Interest-Rate-Derivative Securities. Review of Financial Studies, 3, 573 592. 3 Nelder, J.A., and R. Mead. 1965). A simplex method for function minimization. The Computer Journal, 7, 308 313. 4 Pelsser, A. 1997). A Tractable Yield-Curve Model That Guarantees Positive Interest Rates. Review of Derivatives Research, 1, 269 284. 13

1: 30 26 7 2: 30 26 7 14

3: 30 26 7 JGB 4: 30 26 4 15

5: 30 22 6: 30 14 16